
CSE P 501 – Compilers

LR Parser Construction
Hal Perkins
Spring 2018

UW CSE P 501 Spring 2018 E-1



Agenda

• LR(0) state construction
• FIRST, FOLLOW, and nullable
• Variations: SLR, LR(1), LALR

UW CSE P 501 Spring 2018 E-2



LR State Machine

• Idea: Build a DFA that recognizes handles 
– Language generated by a CFG is generally not 

regular, but
– Language of viable prefixes for a CFG is regular
• So a DFA can be used to recognize handles

– LR Parser reduces when DFA accepts a handle

UW CSE P 501 Spring 2018 E-3



Prefixes, Handles, &c (review)

• If S is the start symbol of a grammar G,
– If S =>* a then a is a sentential form of G
– g is a viable prefix of G if there is some derivation 

S =>*rm aAw =>*rm abw and g is a prefix of ab.
– The occurrence of b in abw is a handle of abw

• An item is a marked production (a . at some position 
in the right hand side)
– [A ::= . X Y ]   [A ::= X . Y ]   [A ::= X Y . ] 

UW CSE P 501 Spring 2018 E-4



Building the LR(0) States
• Example grammar

S’ ::= S $
S ::= ( L )
S ::= x
L ::= S
L ::= L , S

– We add a production S’ with the original start symbol 
followed by end of file ($)
• We accept if we reach the end of this production

– Question: What language does this grammar generate?

UW CSE P 501 Spring 2018 E-5



Start of LR Parse

• Initially
– Stack is empty
– Input is the right hand side of S’, i.e., S $
– Initial configuration is [S’ ::= . S $]
– But, since position is just before S, we are also just 

before anything that can be derived from S

UW CSE P 501 Spring 2018 E-6

0.  S’ ::= S $
1.  S ::= ( L )
2.  S ::= x
3.  L ::= S
4.  L ::= L , S



Initial state

• A state is just a set of items
– Start: an initial set of items
– Completion (or closure): additional productions whose left 

hand side appears to the right of the dot in some item 
already in the state 

UW CSE P 501 Spring 2018 E-7

S’ ::= . S $
S ::= . ( L )
S ::= . x

start

completion

0.  S’ ::= S $
1.  S ::= ( L )
2.  S ::= x
3.  L ::= S
4.  L ::= L , S



Shift Actions (1)

• To shift past the x, add a new state with appropriate item(s), 
including their closure
– In this case, a single item; the closure adds nothing
– This state will lead to a reduction since no further shift is possible

UW CSE P 501 Spring 2018 E-8

S’ ::= . S $
S ::= . ( L )
S ::= . x

S ::= x .x

0.  S’ ::= S $
1.  S ::= ( L )
2.  S ::= x
3.  L ::= S
4.  L ::= L , S



Shift Actions (2)

• If we shift past the ( , we are at the beginning of L
• The closure adds all productions that start with L, which also 

requires adding all productions starting with S

UW CSE P 501 Spring 2018 E-9

S’ ::= . S $
S ::= . ( L )
S ::= . x 

S ::= ( . L )
L ::= . L , S
L ::= . S 
S ::= . ( L )
S ::= . x

(

0.  S’ ::= S $
1.  S ::= ( L )
2.  S ::= x
3.  L ::= S
4.  L ::= L , S



Goto Actions

• Once we reduce S, we’ll pop the rhs from the 
stack exposing the first state.  Add a goto
transition on S for this.

UW CSE P 501 Spring 2018 E-10

S’ ::= . S $
S ::= . ( L )
S ::= . x

S’ ::= S . $S

0.  S’ ::= S $
1.  S ::= ( L )
2.  S ::= x
3.  L ::= S
4.  L ::= L , S



Basic Operations

• Closure (S )
– Adds all items implied by items already in S

• Goto (I, X )
– I is a set of items
– X is a grammar symbol (terminal or non-terminal)
– Goto moves the dot past the symbol X in all 

appropriate items in set I

UW CSE P 501 Spring 2018 E-11



Closure Algorithm

• Closure (S ) =
repeat

for any item [A ::= a . B b] in S
for all productions B ::= g
add [B ::= . g] to S

until S does not change
return S

• Classic example of a fixed-point algorithm

UW CSE P 501 Spring 2018 E-12



Goto Algorithm

• Goto (I, X ) =
set new to the empty set
for each item [A ::= a . X b] in I

add [A ::= a X . b] to new
return Closure (new )

• This may create a new state, or may return an 
existing one

UW CSE P 501 Spring 2018 E-13



LR(0) Construction

• First, augment the grammar with an extra 
start production S’ ::= S $

• Let T be the set of states
• Let E be the set of edges
• Initialize T to Closure ( [S’ ::= . S $] )
• Initialize E to empty

UW CSE P 501 Spring 2018 E-14



LR(0) Construction Algorithm
repeat

for each state I in T
for each item [A ::= a . X b] in I

Let new be Goto( I, X )
Add new to T if not present
Add I⟶ new to E if not present

until E and T do not change in this iteration

• Footnote: For symbol $, we don’t compute goto(I, $); instead, we make 
this an accept action.

UW CSE P 501 Spring 2018 E-15

X



Example: States for

UW CSE P 501 Spring 2018 E-16

0.  S’ ::= S $
1.  S ::= ( L )
2.  S ::= x
3.  L ::= S
4.  L ::= L , S



Building the Parse Tables (1)

• For each edge I ⟶ J
– if X is a terminal, put sj in column X, row I of the 

action table (shift to state j)
– If X is a non-terminal, put gj in column X, row I of 

the goto table (go to state j)

UW CSE P 501 Spring 2018 E-17

x



Building the Parse Tables (2)

• For each state I containing an item 
[S’ ::= S . $], put accept in column $ of row I

• Finally, for any state containing 
[A ::= g .] put action rn (reduce) in every 
column of row I in the table, where n is the 
production number (not a state number)

UW CSE P 501 Spring 2018 E-18



Example: Tables for

UW CSE P 501 Spring 2018 E-19

0.  S’ ::= S $
1.  S ::= ( L )
2.  S ::= x
3.  L ::= S
4.  L ::= L , S



Where Do We Stand?

• We have built the LR(0) state machine and 
parser tables
– No lookahead yet
– Different variations of LR parsers add lookahead

information, but basic idea of states, closures, and 
edges remains the same

• A grammar is LR(0) if its LR(0) state machine 
(equiv. parser tables) has no shift-reduce or 
reduce-reduce conflicts.

UW CSE P 501 Spring 2018 E-20



A Grammar that is not LR(0)

• Build the state machine and parse tables for a 
simple expression grammar

S ::= E $
E ::= T + E
E ::= T
T ::= x

UW CSE P 501 Spring 2018 E-21



LR(0) Parser for

x + $ E T

1 s5 g2 G3

2 acc

3 r2 s4,r2 r2

4 s5 g6 G3

5 r3 r3 r3

6 r1 r1 r1

UW CSE P 501 Spring 2018 E-22

0.  S ::= E $
1.  E ::= T + E
2.  E ::= T
3.  T ::= x

S ::= . E $
E ::= . T + E
E ::= . T
T ::= . x

T ::= x .

S ::= E . $

E ::= T . + E
E ::= T .

E ::= T + . E
E ::= . T + E
E ::= . T
E ::= . xE ::= T + E.

1 2

3

4
5

6

E

T

+ T
x

E

n State 3 is has two possible 
actions on +
n shift 4, or reduce 2

n \ Grammar is not LR(0)



How can we solve conflicts like this?

• Idea: look at the next symbol after the handle before 
deciding whether to reduce

• Easiest: SLR – Simple LR.  Reduce only if next input 
terminal symbol could follow the nonterminal on the 
left of the production in some possible derivation(s)

• More complex: LR and LALR.  Store lookahead symbols 
in items to keep track of what can follow a particular 
instance of a reduction
– LALR used by YACC/Bison/CUP; we won’t examine in detail 

– see your favorite compiler book for explanations

UW CSE P 501 Spring 2018 E-23



SLR Parsers

• Idea: Use information about what can follow a 
non-terminal to decide if we should perform a 
reduction; don’t reduce if the next input symbol 
can’t follow the resulting non-terminal

• We need to be able to compute FOLLOW(A) – the 
set of symbols that can follow A in any possible 
derivation

– i.e., t is in FOLLOW(A) if any derivation contains At

– To compute this, we need to compute FIRST(g) for 
strings g that can follow A

UW CSE P 501 Spring 2018 E-24



Calculating FIRST(g)

• Sounds easy… If g = X Y Z , then FIRST(g) is 
FIRST(X), right?

– But what if we have the rule X ::= ε?
– In that case, FIRST(g) includes anything that can follow 

X, i.e. FOLLOW(X), which includes FIRST(Y) and, if Y
can derive ε, FIRST(Z), and if Z can derive ε, …

– So computing FIRST and FOLLOW involves knowing 
FIRST and FOLLOW for other symbols, as well as which 
ones can derive ε.

UW CSE P 501 Spring 2018 E-25



FIRST, FOLLOW, and nullable

• nullable(X) is true if X can derive the empty string
• Given a string g of terminals and non-terminals, 

FIRST(g) is the set of terminals that can begin any 
strings derived from g
– For SLR we only need this for single terminal or non-

terminal symbols, not arbitrary strings g
• FOLLOW(X) is the set of terminals that can 

immediately follow X in some derivation
• All three of these are computed together

UW CSE P 501 Spring 2018 E-26



Computing FIRST, FOLLOW, and 
nullable (1)
• Initialization

set FIRST and FOLLOW to be empty sets
set nullable to false for all non-terminals
set FIRST[a] to a for all terminal symbols a

• Repeatedly apply four simple observations to 
update these sets
– Stop when there are no further changes
– Another fixed-point algorithm

UW CSE P 501 Spring 2018 E-27



Computing FIRST, FOLLOW, and 
nullable (2)

repeat
for each production X := Y1 Y2 … Yk
if Y1 … Yk are all nullable (or if k = 0)

set nullable[X] = true
for each i from 1 to k and each j from i +1 to k

if Y1 … Yi-1 are all nullable (or if i = 1)
add FIRST[Yi] to FIRST[X]

if Yi+1 … Yk are all nullable (or if i = k )
add FOLLOW[X] to FOLLOW[Yi]

if Yi+1 … Yj-1 are all nullable (or if i+1=j)
add FIRST[Yj] to FOLLOW[Yi]

Until FIRST, FOLLOW, and nullable do not change

UW CSE P 501 Spring 2018 E-28



Example

• Grammar
Z ::= d
Z ::= X Y Z
Y ::= ε
Y ::= c
X ::= Y
X ::= a

nullable FIRST FOLLOW

X

Y

Z

UW CSE P 501 Spring 2018 E-29



LR(0) Reduce Actions (review)

• In a LR(0) parser, if a state contains a 
reduction, it is unconditional regardless of the 
next input symbol

• Algorithm:
Initialize R to empty
for each state I in T

for each item [A ::= a .] in I
add (I, A ::= a) to R

UW CSE P 501 Spring 2018 E-30



SLR Construction
• This is identical to LR(0) – states, etc., except for the 

calculation of reduce actions
• Algorithm:

Initialize R to empty
for each state I in T

for each item [A ::= a .] in I
for each terminal a in FOLLOW(A)

add (I, a, A ::= a) to R
– i.e., reduce a to A in state I only on lookahead a

UW CSE P 501 Spring 2018 E-31



SLR Parser for

x + $ E T

1 s5 g2 g3

2 acc

3 r2 s4,r2 r2

4 s5 g6 g3

5 r3 r3 r3

6 r1 r1 r1

UW CSE P 501 Spring 2018 E-32

0.  S ::= E $
1.  E ::= T + E
2.  E ::= T
3.  T ::= x

S ::= . E $
E ::= . T + E
E ::= . T
T ::= . x

T ::= x .

S ::= E . $

E ::= T . + E
E ::= T .

E ::= T + . E
E ::= . T + E
E ::= . T
E ::= . xE ::= T + E.

1 2

3

4
5

6

E

T

+ T
x

E



On To LR(1)

• Many practical grammars are SLR
• LR(1) is more powerful yet
• Similar construction, but notion of an item is 

more complex, incorporating lookahead 
information

UW CSE P 501 Spring 2018 E-33



LR(1) Items

• An LR(1) item [A ::= a . b, a] is
– A grammar production (A ::= ab)
– A right hand side position (the dot)
– A lookahead symbol (a)

• Idea: This item indicates that a is the top of 
the stack and the next input is derivable 
from ba.

• Full construction: see the book

UW CSE P 501 Spring 2018 E-34



LR(1) Tradeoffs

• LR(1)
– Pro: extremely precise; largest set of grammars
– Con: potentially very large parse tables with many 

states

UW CSE P 501 Spring 2018 E-35



LALR(1)

• Variation of LR(1), but merge any two states 
that differ only in lookahead
– Example: these two would be merged

[A ::= x . , a]
[A ::= x . , b]

UW CSE P 501 Spring 2018 E-36



LALR(1) vs LR(1)

• LALR(1) tables can have many fewer states than LR(1)

– Somewhat surprising result: will actually have same 
number of states as SLR parsers, even though LALR(1) is 
more powerful

– After the merge step, acts like SLR parser with “smarter” 
FOLLOW sets (can be specific to particular handles)

• LALR(1) may have reduce conflicts where LR(1) would 
not (but in practice this doesn’t happen often)

• Most practical bottom-up parser tools are LALR(1) 
(e.g., yacc, bison, CUP, …)

UW CSE P 501 Spring 2018 E-37



Language Heirarchies

UW CSE P 501 Spring 2018 E-38

ambiguous
grammars

unambiguous grammars

LR(k)
LR(1)

LALR(1)

SLR

LR(0)
LL(0)

LL(1)
LL(k)



Coming Attractions

Rest of Parsing…
• LL(k) Parsing – Top-Down
• Recursive Descent Parsers
– What you can do if you want a parser in a hurry

Then…
• AST construction – what do do while you parse!
• Visitor Pattern – how to traverse ASTs for further 

processing (type checking, code generation, …)

UW CSE P 501 Spring 2018 E-39


