
CSE P 501 – Compilers

Overview and Administrivia
Hal Perkins
Spring 2018

UW CSE P 501 Spring 2018 A-1

Agenda

• Introductions
• What’s a compiler?
• Administrivia

UW CSE P 501 Spring 2018 A-2

Who: Course staff
• Instructor:
– Hal Perkins: UW faculty for quite a while now; have taught

various compiler courses (among other things) many times
• TA:
– Phillip Dang, CSE grad student

• Office hours: Phillip, Tue. before class, 5:30-6:20,
CSE220;
Hal, after class, CSE305 or CSE548 office.
– In the past have sometimes had a “virtual office hour”

later in the week or on the weekend. What would be
helpful?

• Get to know us – we’re here to help you succeed!
UW CSE P 501 Spring 2018 A-3

Credits

• Some direct ancestors of this course:

– UW CSE 401 (Chambers, Snyder, Notkin, Ringenburg,

Henry, …)

– UW CSE PMP 582/501 (Perkins, Hogg)

– Rice CS 412 (Cooper, Kennedy, Torczon)

– Cornell CS 412-3 (Teitelbaum, Perkins)

– Other compiler courses, papers, …

– Many books (Appel; Cooper/Torczon; Aho, [[Lam,]

Sethi,] Ullman [Dragon Book], Fischer, [Cytron ,]

LeBlanc; Muchnick, …)

• [Won’t attempt to attribute everything – and

some of the details are lost in the haze of time.]

UW CSE P 501 Spring 2018 A-4

And the point is…

• How do we execute something like this?
int nPos = 0;
int k = 0;
while (k < length) {

if (a[k] > 0) {
nPos++;

}
}

• The computer only knows 1’s & 0’s - i.e.,
encodings of instructions and data

UW CSE P 501 Spring 2018 A-5

Interpreters & Compilers

• Programs can be compiled or interpreted (or
sometimes both)

• Compiler
– A program that translates a program from one

language (the source) to another (the target)
• Languages are sometimes even the same(!)

• Interpreter
– A program that reads a source program and produces

the results of executing that program on some input

UW CSE P 501 Spring 2018 A-6

Common Issues

• Compilers and interpreters both must read the
input – a stream of characters – and
“understand” it: front-end analysis phase

w h i l e (k < l e n g t h) { <nl> <tab> i f (a [k] > 0
) <nl> <tab> <tab>{ n P o s + + ; } <nl> <tab> }

UW CSE P 501 Spring 2018 A-7

Compiler

• Read and analyze entire program
• Translate to semantically equivalent program

in another language
– Presumably easier or more efficient to execute

• Offline process
• Tradeoff: compile-time overhead

(preprocessing) vs execution performance

UW CSE P 501 Spring 2018 A-8

Typically implemented with Compilers

• FORTRAN, C, C++, COBOL, many other
programming languages, (La)TeX, SQL
(databases), VHDL, many others

• Particularly appropriate if significant
optimization wanted/needed

UW CSE P 501 Spring 2018 A-9

Interpreter
• Interpreter
– Typically implemented as an “execution engine”
– Program analysis interleaved with execution:

running = true;
while (running) {

analyze next statement;
execute that statement;

}
– Usually requires repeated analysis of individual

statements (particularly in loops, functions)
• But hybrid approaches can avoid some of this overhead

– But: immediate execution, good debugging/interaction,
etc.

UW CSE P 501 Spring 2018 A-10

Often implemented with interpreters

• Javascript, PERL, Python, Ruby, awk, sed,
shells (bash), Scheme/Lisp/ML/OCaml,
postscript/pdf, machine simulators

• Particularly efficient if interpreter overhead is
low relative to execution cost of individual
statements
– But even if not (machine simulators), flexibility,

immediacy, or portability may be worth it

UW CSE P 501 Spring 2018 A-11

Hybrid approaches
• Compiler generates byte code intermediate

language, e.g. compile Java source to Java Virtual
Machine .class files, then:
– Interpret byte codes directly, or
– Compile some or all byte codes to native code

• Variation: Just-In-Time compiler (JIT) – detect hot spots &
compile on the fly to native code

• Widely use for Javascript, many functional and
other languages (Haskell, ML, Ruby), Java, C# and
Microsoft CLR, others

UW CSE P 501 Spring 2018 A-12

Structure of a Compiler

• At a high level, a compiler has two pieces:
– Front end: analysis
• Read source program and discover its structure and

meaning
– Back end: synthesis
• Generate equivalent target language program

UW CSE P 501 Spring 2018 A-13

Source TargetFront End Back End

Compiler must…

• Recognize legal programs (& complain about illegal
ones)

• Generate correct code
– Compiler can attempt to improve (“optimize”) code, but

must not change behavior
• Manage runtime storage of all variables/data
• Agree with OS & linker on target format

UW CSE P 501 Spring 2018 A-14

Source TargetFront End Back End

Implications

• Phases communicate using some sort of
Intermediate Representation(s) (IR)
– Front end maps source into IR
– Back end maps IR to target machine code
– Often multiple IRs – higher level at first, lower level in later

phases

UW CSE P 501 Spring 2018 A-15

Source TargetFront End Back End

Front End

• Usually split into two parts
– Scanner: Responsible for converting character stream to

token stream: keywords, operators, variables, constants, …
• Also: strips out white space, comments

– Parser: Reads token stream; generates IR
• Scanner & parser can be generated automatically
– Use a formal grammar to specify the source language
– Tools read the grammar and generate scanner & parser

(lex/yacc or flex/bison for C/C++, JFlex/CUP for Java)

UW CSE P 501 Spring 2018 A-16

Scanner Parsersource tokens IR

Scanner Example
• Input text

// this statement does very little
if (x >= y) y = 42;

• Token Stream

– Notes: tokens are atomic items, not character strings;
comments & whitespace are not tokens (in most languages –
counterexamples: Python indenting, Ruby newlines)
• Tokens may carry associated data (e.g., int value, variable name)

UW CSE P 501 Spring 2018 A-17

IF LPAREN ID(x) GEQ ID(y)

RPAREN ID(y) BECOMES INT(42) SCOLON

Parser Output (IR)
• Given token stream from scanner, the parser

must produce output that captures the meaning
of the program

• Most common output from a parser is an abstract
syntax tree
– Essential meaning of program without syntactic noise
– Nodes are operations, children are operands

• Many different forms
– Engineering tradeoffs have changed over time
– Tradeoffs (and IRs) can also vary between different

phases of a single compiler

UW CSE P 501 Spring 2018 A-18

Parser Example

• Token Stream • Abstract Syntax Tree

UW CSE P 501 Spring 2018 A-19

IF LPAREN ID(x)

GEQ ID(y) RPAREN

ID(y) BECOMES

INT(42) SCOLON

ifStmt

>=

ID(x) ID(y)

assign

ID(y) INT(42)

Original source program:
// this statement does very little
if (x >= y) y = 42;

Static Semantic Analysis
• During or after parsing, check that the program is legal

and collect info for the back end
• Context-dependent checks that cannot be captured in a

context-free grammar
– Type checking (e.g., int x = 42 + true, number and types of

arguments in method call)
– Check language requirements like proper declarations, etc.
– Preliminary resource allocation
– Collect other information needed for back end analysis

and code generation
• Key data structure: Symbol Table(s)
– Maps names -> meanings/types/details

UW CSE P 501 Spring 2018 A-20

Back End

• Responsibilities
– Translate IR into target machine code
– Should produce “good” code
• “good” = fast, compact, low power (pick some)
• Optimization phase translates correct code into

semantically equivalent “better” code
– Should use machine resources effectively
• Registers
• Instructions
• Memory hierarchy

UW CSE P 501 Spring 2018 A-21

Back End Structure

• Typically split into two major parts
– “Optimization” – code improvements
• Examples: common subexpression elimination,

constant folding, code motion (move invariant
computations outside of loops)
• Optimization phases often interleaved with analysis

– Target Code Generation (machine specific)
• Instruction selection & scheduling, register allocation
• Machine-specific optimizations (peephole opt., …)

– Optimization usually done on lower-level linear
code produced by walking AST

UW CSE P 501 Spring 2018 A-22

The Result

• Input
if (x >= y)

y = 42;

• Output

movl 16(%rbp),%edx
movl -8(%rbp),%eax
cmpl %eax, %edx
jl L17
movl $42, -8(%rbp)

L17:

UW CSE P 501 Spring 2018 A-23

ifStmt

>=

ID(x) ID(y)

assign

ID(y) INT(42)

Why Study Compilers? (1)

• Become a better programmer(!)

– Insight into interaction between languages,
compilers, and hardware

– Understanding of implementation techniques,
how code maps to hardware

– Better intuition about what your code does

– Understanding how compilers optimize code helps
you write code that is easier to optimize

• Avoid wasting time on source “optimizations” that the
compiler could do as well or better – particularly if you
don’t confuse it with code that is too clever

UW CSE P 501 Spring 2018 A-24

Why Study Compilers? (2)

• Compiler techniques are everywhere
– Parsing (“little” languages, interpreters, XML)
– Software tools (verifiers, checkers, …)
– Database engines, query languages
– AI, etc.: domain-specific languages
– Text processing
• Tex/LaTex -> dvi -> Postscript -> pdf

– Hardware: VHDL; model-checking tools
– Mathematics (Mathematica, Matlab, SAGE)

UW CSE P 501 Spring 2018 A-25

Why Study Compilers? (3)
• Fascinating blend of theory and engineering
– Lots of beautiful theory around compilers

• Parsing, scanning, static analysis
– Interesting engineering challenges and tradeoffs,

particularly in optimization (code improvement)
• Ordering of optimization phases
• What works for some programs can be bad for others

– Plus some very difficult problems (NP-hard or worse)
• E.g., register allocation is equivalent to graph coloring
• Need to come up with good-enough

approximations/heuristics for intractable “optimizations”

UW CSE P 501 Spring 2018 A-26

Why Study Compilers? (4)
• Draws ideas from many parts of CSE
– AI: Greedy algorithms, heuristic search
– Algorithms: graph, dynamic programming, approximation
– Theory: Grammars, DFAs and PDAs, pattern matching,

fixed-point algorithms
– Systems: Allocation & naming, synchronization, locality
– Architecture: pipelines, instruction set use, memory

hierarchy management, locality

UW CSE P 501 Spring 2018 A-27

Why Study Compilers? (5)

• You might even write a compiler some day!

• You will write parsers and interpreters for little
languages, if not bigger things
– Command languages, configuration files, XML,

network protocols, …

• And if you like working with compilers and are
good at it there are many jobs available…

UW CSE P 501 Spring 2018 A-28

Some History (1)

• 1950’s. Existence proof

– FORTRAN I (1954) – competitive with hand-

optimized code

• 1960’s

– New languages: ALGOL, LISP, COBOL, SIMULA

– Formal notations for syntax, esp. BNF

– Fundamental implementation techniques

• Stack frames, recursive procedures, etc.

UW CSE P 501 Spring 2018 A-29

Some History (2)

• 1970’s
– Syntax: formal methods for producing compiler

front-ends; many theorems
• Late 1970’s, 1980’s
– New languages (functional; object-oriented -

Smalltalk)
– New architectures (RISC machines, parallel

machines, memory hierarchy issues)
– More attention to back-end issues

UW CSE P 501 Spring 2018 A-30

Some History (3)

• 1990s
– Techniques for compiling objects and classes,

efficiency in the presence of dynamic dispatch and
small methods (Self – precursor of Javascript,
Smalltalk; techniques now common in JVMs, etc.)

– Just-in-time compilers (JITs)
– Compiler technology critical to effective use of

new hardware (RISC, parallel machines, complex
memory hierarchies)

UW CSE P 501 Spring 2018 A-31

Some History (4)

• Recent years:

– Compilation techniques in many new places

• Software analysis, verification, security

– Phased compilation – blurring the lines between

“compile time” and “runtime”

– Dynamic languages – e.g., JavaScript, …

– Domain-specific languages (DSL)

– Optimization techniques for power, approximate

computing, …

– Memory models, concurrency, multicore, …

– Full stack proofs/verification; secure OS/compilers

– Etc. etc.

UW CSE P 501 Spring 2018 A-32

Compiler (and related) Turing Awards

• 1966 Alan Perlis
• 1972 Edsger Dijkstra
• 1974 Donald Knuth
• 1976 Michael Rabin and

Dana Scott
• 1977 John Backus
• 1978 Bob Floyd
• 1979 Ken Iverson
• 1980 Tony Hoare
• 1984 Niklaus Wirth
• 1987 John Cocke

• 1991 Robin Milner
• 2001 Ole-Johan Dahl and

Kristen Nygaard
• 2003 Alan Kay
• 2005 Peter Naur
• 2006 Fran Allen
• 2008 Barbara Liskov
• 2013 Leslie Lamport
• 2018 John Hennessy &

David Patterson

UW CSE P 501 Spring 2018 33

What’s in CSE P 501?

• In past years most P501 students either have
never taken a compiler course or what was
covered was a mixed bag, so…

• We will cover the basics, but fairly quickly…
• Then coverage of more advanced topics
• If you have some background, some of this

will be review, but most everyone will pick up
new things

UW CSE P 501 Spring 2018 A-34

Expected background
• Assume undergraduate courses or equiv. in:
– Data structures and algorithms

• Linked lists, trees, hash tables, dictionaries, graphs
– Machine organization

• Assembly-level programming of some architecture (not
necessarily x86-64)

– Formal languages & automata
• Regular expressions, NFAs/DFAs, context-free grammars,

maybe a little parsing

• We will review basics and gaps can be filled in but
might take some extra time/work

UW CSE P 501 Spring 2018 A-35

CSE P 501 Course Project

• Best way to learn about compilers is to build one
• Course project
– MiniJava compiler: classes, objects, etc.

• Core parts of Java – essentials only
• Originally from Appel textbook (but you won’t need that)

– Generate executable x86-64 code & run it
– Every legal MiniJava program is also legal regular Java

– compare results from your project with javac/java

UW CSE P 501 Spring 2018 A-36

Project Scope
• Goal: large enough to be interesting and capture

key concepts; small enough to do in 10 weeks
• Completed in steps through the quarter
– Where you wind up at the end is the most important
– Intermediate milestone deadlines to keep you on

schedule and provide feedback at important points
– Evaluation is weighted towards final results but

milestone results count
• Core requirements, then open-ended if you have

time for extensions

UW CSE P 501 Spring 2018 A-37

Project Implementation

• Default is Java 8 with JFlex, CUP scanner/parser tools
– Choice of editors/environments up to you

• Somewhat open to alternatives – check with course
staff – but you assume some risk of the unknown
– Have had successful past projects using C#, F#, Haskell, ML,

others (even Python & Ruby!)
– You need to be sure there are Lex/Yacc, Flex/Bison work-

alike compiler tools available
– Your compiler has to “work” the same as the regular ones

(startup, command options, etc.)
– Course staff will help as best we can but no guarantees

UW CSE P 501 Spring 2018 A-38

Project Groups & Repositories

• You should work in groups of 2
– Pick a partner now to work with throughout quarter

• Suggestion: use discussion board to locate partners?

– Have had some people do the project solo, but it is easy to
underestimate effort needed & it is real helpful to have
someone to talk to about details

• All groups must use course repositories on CSE GitLab
server to store their projects. We’ll access files from
there for evaluation (& to help with project)

• By early next week, fill out partner info form on course
web so we can set up groups and repositories

UW CSE P 501 Spring 2018 A-39

Requirements & Grading

• Roughly
– 50% project
– 20% individual written homework
– 25% exam (Thursday, May 24 – extra class session)
– 5% other/discretionary
We reserve the right to adjust as needed

UW CSE P 501 Spring 2018 A-40

Lectures

• Tuesdays, 6:30-9:20
• Lecture slides posted on course calendar by

mid-afternoon before each class
• Live video stream, but please join us – it’s

lonely talking to an empty room & better for
you if you’re here to ask questions & interact

• Archived video and slides posted a day or two
later

UW CSE P 501 Spring 2018 A-41

Staying in touch

• Course web site
• Discussion board
– For anything related to the course
– Join in! Help each other out. Staff will contribute.

• Mailing list
– You are automatically subscribed if you are

registered
– Will keep this fairly low-volume; limited to things

that everyone needs to read

UW CSE P 501 Spring 2018 A-42

Books

• Four good books – use at least one,
others might be worth checking out:
– Cooper & Torczon, Engineering a Compiler.

“Official text”, 1st edition should be ok too.
– Appel, Modern Compiler Implementation in

Java, 2nd ed. MiniJava is from here.
– Aho, Lam, Sethi, Ullman, “Dragon Book”
– Fischer, Cytron, LeBlanc, Crafting a Compiler

UW CSE P 501 Spring 2018 A-43

Academic Integrity
• We want a collegial group helping each other succeed!
• But: you must never misrepresent work done by

someone else as your own or assist others to do the
same (for compiler project, your group’s work should
be your own)

• Read the course policy carefully (on the web)
• We trust you to behave ethically
– I have little sympathy for violations of that trust
– Honest work is the most important feature of a university

(or engineering or business). Anything less disrespects
your instructor, your colleagues, and yourself

UW CSE P 501 Spring 2018 A-44

Any questions?

• Your job is to ask questions to be sure you
understand what’s happening and to slow me
down
– Otherwise, we’ll barrel on ahead J

UW CSE P 501 Spring 2018 A-45

Coming Attractions

• Quick review of formal grammars

• Lexical analysis – scanning

– Background for first part of the project

• Followed by parsing …

• Start reading: ch. 1, 2.1-2.4 in EAC or

corresponding chapters in other books

UW CSE P 501 Spring 2018 A-46

