CSE P 501 — Compilers

Threads and Memory Models
Hal Perkins
Winter 2016

References

B Threads Cannot Be Implemented as a Library
Boehm, PLDI 2005

B Foundations of the C++ Concurrency Memory Model
Boehm and Adve, PLDI 2008

B The Java Memory Model
Manson, Pugh, and Adve, POPL 2005

Credits: Earlier versions of lecture by
Vijay Menon, CSE 501, Sp09
Dan Grossman, CSE 401, Wil0

LA CSE P 501 Winter 2016

e e

Threads and shared memory

* Multithreading lets multiple threads run
concurrently

— Each thread has its own local variables (stack and
registers), but...

— All threads share one memory
» globals / statics + heap objects
— Use memory to communicate © or interfere &

* Becoming more common to exploit multicore
hardware

L CSE P 501 Winter 2016 X3

Nalve view

The following almost works
1. Define your programming language “as usual”
— Don’t think about > 1 thread

2. Compile the code like you've learned all quarter
— Don’t think about > 1 thread

3. Provide a run-time library that provides threading
— Create thread

— Create/acquire/release mutual-exclusion locks
— Etc.

4. Profit

L CSE P 501 Winter 2016 i34

This lecture on one slide

The naive approach, followed for decades, is fatally flawed

* Compiler must know threads & shared-memory exist
— Else it may perform incorrect optimizations

* Programmer must know threads & shared-memory exist

— The natural definition (“sequential consistency”) of how
shared-memory works (“the memory model”) is not tractably
implementable by compilers or hardware

— So we have less-natural weaker definitions to make language
implementation easier. Usually defined so that:

* If programmers avoid data races then they can ignore this
* Most compiler optimizations remain legal

L C5E P 501 Winter 2016 XFo

Safety of optimization

* The standard rule for optimization:

If, in some program context, the result of evaluating el
cannot be distinguished from the result of evaluating e2,
the compiler can substitute e2 for el in that context

* Now: Three gotchas that arise only with multiple
threads and shared memory

— Examples use global variables to keep them short;
same issues arise with shared objects in the heap

— Examples are illegal optimizations in, e.g., Java

L C5E P 501 Winter 2016 XFb

Gotcha #1: Speculation

(Probably the least common / well-motivated, but the
easiest to understand)

// x and vy are globals, initially O

vold foo () {
7 ++X;

+ if (y==1)

i -

}

L CSE P 501 Winter 2016

37

Gotcha #1: Speculation

// x and y are globals, initially 0

volid foo() { optimized volid foo () {
if (yv==1) if(y!=1)

++x; —TXy

L CSE P 501 Winter 2016 i3B

Before optimization

// x and y are globals, initially O

Thread 1

vold foo ()
++%;

if (y==1)
++X;

Thread 2
voilid bar () {

if (x==2)
commence evil () ;

L CSE P 501 Winter 2016

i3

After optimization

// x and y are globals, initially O

Thread 1

vold foo ()
X += 2;

Thread 2
voilid bar () {

if (x==2)
commence evil () ;

L CSE P 501 Winter 2016

#3-10

10

Recap

So our compiler made a change that:
* |s legal for all single-threaded programs

« Caused execution to “make up” a new value for x

So either:
* Qur compiler must not do this (thread-aware)

* Or we must change our language definition to
allow this (bad idea in this example)

L CSE P 501 Winter 2016 3-11

11

Gotcha #2: Register promotion

// x is global, initially O

vold foo(int* a, int n)
for(int 1=0; i<n; ++1
x += al[i];

} @

{
)

\\“{%_
- : sosting :
¥ ¢ volid foo(int* a, int n) {
-
i “int reg = x;
for(int i=0; i<n; ++1i)
vreg += a[i];
vX = reg;
}
Ly CSE P 501 Wirter 2015 X312

12

Before optimization

// x is global, initially O

// Thread 1 // Thread 2
void foo(int* a, int n) { void bar() {
for (int 1 = 0; 1 < n; ++1) x = 10;

X += @L;]; i
} - }

What happens when n == 07

L CSE P 501 Winter 2016 X313

13

After optimization

// x is global, initially O

// Thread 1 // Thread 2
vold foo(int* a, int n) { vold bar() {
int reg = x; x = 10;

for (int i = 0; i < n; ++i)
reg += a[i]; }
X = reg;
}

What happens (sometimes) when n == 0?

L CSE P 501 Winter 2016 x3-14

14

Recap

* In executions where n==0, the compiler
optimization can “lose an update”

— Original code: x==10 is guaranteed for code after
both threads finish

— Optimized code: new write of x = O creates new
possible result

L CSE P 501 Winter 2016 X3-15

15

Gotcha #3:Adjacent data

Natural assembly for body:
char arr[4]: r“movb $0, _arr
| movb $0, arr+l

void foo() { / movb $0, _arr+2
varr[0] = (char)0; =
/Yarr[l] = (char)0; _
varr[2] = (char)0; Assembly with one store:
} movl _arr, %eax

andl $0x000000FF, %eax

movl %eax, _arr

LI CSE P 501 Wirter 2016 ¥3-16

16

Before optimization

char arr[4];

// Thread 2
// arr[3] = ‘a’;
movb $98, arr+3

// Thread 1:
movb $0, _arr
movb $0, _arr+l
movb $0, arr+2

L CSE P 501 Winter 2016

3-17

17

After optimization

char arr[4];

// Thread 1: // Thread 2
movl _arr, %eax // arr[3] = ‘a’;
andl $0x000000FF, %eax movb $98, arr+3

movl %Zeax, arr

L CSE P 501 Winter 2016 #3-18

18

Recap

The clever compiler is adding the assighment
“arr[3]=arr[3];”

— That's fine in single-threaded code

In practice, this is a problem if:
* Your architecture doesn’t have byte-stores
— Leave space between string characters??

* You have bit-fields in C (and no bit-stores)

— C++ specifically allows the “clever” code because
there is no other way (so programmer must avoid
simultaneous write to bit-fields in same struct)

L CSE P 501 Winter 2016 X3-19

19

Where are we

* So far have emphasized that the compiler must

limit itself in order to be correct in the presence
of threads

— This is CSE P 501 after all

* You should also understand that the programmer
must accept unintuitive language definitions
— Otherwise efficient compiler/hardware too difficult
— Simple answer: Never write code with a data race
— Must discuss memory-consistency models

L CSE P 501 Winter 2016 #3-20

20

Dekker’s example

* Initially, x==0 && y==0

Thread 1 Thread 2
¥ = 1% (a) 3 =L
rl = y; (b) F2 = X5

* What are possible executions?

L CSE P 501 Winter 2016

(c)
(d)

i3-21

21

Dekker’s example

* |nitially, x==0 && y==0

Thread 1 Thread 2
x =1; (a) y =1; (¢
rl = vy; (b) r2 = x; (d)

* What are possible executions?

* Consider interleavings of thread 1 & 2:
—> — abcd, acbd, acdb, cdab, cadb, cabd
— (24 permutations, but need a before b and ¢ before d)

L C5E P 501 Winter 2016 322

22

Dekker’s example

* |nitially, x==0 && y==0

Thread 1 Thread 2
x = 1; v = 1;
rl = vy; r2 = Xx;

* Canrl==0&&r2==07
— No interleaving gives this results, but...
— Most hardware will allow it (store buffers)

— Most compilers will allow it
* Why...

L CSE P 501 Winter 2016 3-23

23

Compiler reordering

* Almost every compiler optimization has the
implicit effect of reordering reads and writes!
— Obvious example: Instruction scheduling

— Less-obvious example: Common-subexpression
elimination

~ X=a+b;
~y=da,
- z=a+b; //optimize to z=x

— Replacing with z=x has the effect of moving the store
to z to before the store to y!

+ y could see a later write to a by another thread than z sees

L CSE P 501 Winter 2016 324

24

Sequential consistency

* The interleaving model is called sequential
consistency and was defined in 1979 by Lamport:

f “.. the result of any execution is the same as if the

| operations of all the processors were executed in some
r sequential order, and the operations of each individual
|\ processor appear in this sequence in the order specified
\ by its program.”

* But no “real” hardware or compiler implements it

* So we have to tell programmers what they can
assume

L CSE P 501 Winter 2016 AE

25

Refined notion

* Guarantee sequential consistency only for
correctly synchronized programs (Adve)

— Give the programmer rules to follow

— Promise interleaving semantics if rules are obeyed

* Correctly synchronized
— Must be intuitive to programmer

— Must not be restrictive for compiler/hardware

L C5E P 501 Winter 2016 AE 8 o]

26

Data races

* Two operations conflict if they both access a
memory location and one is a write

* A execution contains a data race if two adjacent
operations from two different threads conflict

™ "'\, ‘\\‘ ".\
X=1L:y=1L:rl=vy;r2 =x;

* A program is data-race-free it no sequentially
consistent execution (i.e., interleaving) has a data
race

L C5E P 501 Winter 2016 327

27

Correct synchronization

* We call a program correctly synchronized if it is
data race free
* Basic contract— “The Grand Compromise”:

— If programmers write data-race-free programs,
implementers will provide sequentially consistent
semantics

— This is the fundamental property of the Java and
C++ memory models

L C5E P 501 Winter 2016 x3-28

28

How do we avoid races?

* Mutual exclusion:

— Thread acquires lock before accessing a shared
variable

— Locks exist to avoid races

Thread 1 Thread 2
lock (mutex); lock (mutex);
— tmpl =x; “tmps = x;
tmp2 = tmpl + 1; mpd = tmp3 + 1;
x =tmp2 x = tmp4
unlock (mutex); unlock (mutex);

+ Java’s volatile variables (atomics in C++)
— Data races allowed; compiler can’t reorder

L CSE P 501 Winter 2016 3-29

29

What this means for compilers

* |n the absence of synchronization, compilers may
almost operate as if programs were single-
threaded

* Compilers must respect ordering due to
synchronization (locks, volatiles, etc.)

— Even if “hidden” inside a function/method call

* Compilers must not introduce data races into

correctly synchronized code

— This is why Gotchas #2 and #3 are illegal for
compilers!

— They add writes that race with the program!

L CSE P 501 Winter 2016 #3-30

30

What happens on a race?

* |n C++, undefined semantics

Thread 1
x =1; (a)
rl = y; (b)
* Valid results:
—rple==Y and p2 ==

—rl==0andr2==42
— system(rm —rf /*);

Thread 2
y=1; ()
r2 = x; (d)

* Nosuch thing as a benign data race in C++!

— Hence Gotcha #1 is legal in C++ because the original program

had a data race

L CSE P 501 Winter 2016

i3-31

31

Type-safety issues

* In Java, data races cannot violate type safety
— Java promises a measure of security

— Cannot allow data races to be used on purpose by
untrusted code to open / exploit holes

— Java memory model must provide some
guarantees even in the presence of races

* Gotcha#1 is illegal in Java; cannot make up values

L CSE P 501 Winter 2016 J4E e

32

Java reality

* The actual “memory model” (what can and can’t
happen with reads/writes) is very complicated

— Took years by brilliant people and still had problems

* Programmers willing to avoid data races do not
need to understand the definition

— There is a theorem about the definition that all data-

race free programs behave as in the interleaving
semantics

* But compiler writers must avoid gotchas

— Very roughly speaking, don’t make up values or
Introduce data races

L CSE P 501 Winter 2016 X3-33

33

This lecture on one slide

The naive approach, followed for decades, is fatally flawed

* Compiler must know threads & shared-memory exist
— Else it may perform incorrect optimizations

* Programmer must know threads & shared-memory exist

— The natural definition (“sequential consistency”) of how
shared-memory works (“the memory model”) is not tractably
implementable by compilers or hardware

— So we have less-natural weaker definitions to make language
implementation easier. Usually defined so that:

* If programmers avoid data races then they can ignore this
* Most compiler optimizations remain legal

L C5E P 501 Winter 2016 H3-H

34

