CSE P 501 — Compilers

Code Shape Il — Objects & Classes
Hal Perkins
Winter 2016

Agenda

Object representation and layout
Field access

What is this?

Object creation - new

Method calls

— Dynamic dispatch

— Method tables

— Super

Runtime type information

(As before, more generality than we actually need for the project)

L CSE P 501 Winter 2016

L-2

What does this program print?

class One { public static void main(String[] args) {

— int tag; Two two = new Twol);
//_"““ One one = two;

fuuig_sr_*t'l'ag{} {tag=1;}

int getTag() { return tag; } I" one.setTag();
void setlt{int it) { this.it = it; } [2 3 System.out.printin{one.getTag());
int getit() { return it } ||
} one.setlt(17);
= ‘ 3 If-}r two.setTag();
class Two extends One { |I System.out.printin{two.getlt());
(int ii‘ I"I. ? System.out.printin{two.getThat());
— void setTag() { two.resetlt();
tag=2; it=3; W % 1Sﬁ;sturn.uut.printlnftwu.gctltl{}};
}r"’; e 5‘1_ ‘?, System.out.printin{two.getThat());
- int getThat{) {returnit;} k)
void resetit{) { super.setlt(42); } \ }
} %

L CSE P 501 Winter 2016

L-3

Your Answer Here

L CSE P 501 Winter 2016

L-4

Object Representation

* The naive explanation is that an object contains
— Fields declared in its class and in all superclasses

* Redeclaration of a field hides (shadows) superclass instance — but
the superclass field is still there

— Methods declared in its class and all superclasses

* Redeclaration of a method overrides (replaces) — but overridden
methods can still be accessed by super...

* When a method is called, the method “inside” that
particular object is called

— Regardless of the static (compile-time) type of the variable

— (Butwe really don’t want to copy all those methods, do we?)

L C5E P 501 Winter 2016 L5

Actual representation

* Each object contains: Ek_/

— An entry (“slot”) for each field (instance variable)
* Including shadowed and private fields in superclasses

— A pointer to a runtime data structure for its class

* Key component: method dispatch table (next slide)

* Basically a C struct

Ef

* Fields hidden by declarations in subclasses are
still allocated in the object and are accessible
from superclass methods

L CSE P 501 Winter 2016 L-&

Method Dispatch Tables

* One of these per class, not per object

* Often called “vtable”, “vtbl” or “vtab”

— (virtual function table —term from C++)

* One pointer per method — points to beginning
of method code

* Dispatch table offsets fixed at compile time in
O(1) implementations

L CSE P 501 Winter 2016 L-¥

Eh":_

[Tt T
Method Tables and Inheritance (1=

T

5 Al
* Areally simple implementation iﬁgq”;ﬁ%

— Method table for each class has pointers to all iz

methods declared in it (a dictionary)

— Method table also contains a pointer to parent class
method table

— Method dispatch

* Look in current table and use if method declared locally

* Look in parent class table if not local

* Repeat

* “Message not understood” if you can't find it after search

— Actually used/needed in typical implementations of
some dynamic languages (e.g. Ruby, Smalltalk, etc.)

LA CSE P 501 Winter 2016 L-8

O(1) Method Dispatch

* |dea: First part of method table for extended class
has pointers for the same methods in the same
order as the parent class

— BUT pointers actually refer to overriding methods if
these exist

. Method dispatch can be done with indirect jump
using fixed offsets known at compile time — O(1)

«/ In C: *(object->vtbl[offset])(para r‘neterS}

» Pointers to methods added in subclass are after
ptrs to inherited/overridden ones in vtable

LA CSE P 501 Winter 2016 L-9

Method Dispatch Footnotes

* Don’t need vtable pointer to parent class
vtable for method calls, but still useful for
other purposes

— Casts and instanceof

* Multiple inheritance requires more complex
mechanisms

— Also true for multiple interfaces

L CSE P 501 Winter 2016 L-10

10

Perverse Example Revisited

class One {

)

/ class Two extends One {

gntit
@tﬁaf}{

tag 7 3
}
int getThat({) { return it; }
v void resetlt{) { super.setit{42); }
}

publicstatic void main(String[] args) {
o = new Twol);
one = two,

one.setTag();
ystem.out.printn{ane.getTag());

one.setit{17);

two.setTag();

el
System.out.printin{two.getlti});

system.out.printin{two.getThat{));

by -\rL"EiL"[”.H;
stern.out.printin({two.getit());

System.out.printin{two.getThat({));

L-11

11

Implementation

- /@
______: a re E}ﬁLT&j

’amp LT |
‘.

' O,.m. o1 +
palul
&, B L et Te)

] — f .
r
21 s Tﬂ*—?’m‘%
3 — /f
H— TN .VHE’-G’FI'QQ
R = sl
AR oy
=2 W
L CSE P 501 Winter 2016 L-12

12

Now What?

* Need to explore
— Object layout in memory

— Compiling field references

* Implicit and explicit use of “this”
— Representation of vtables
— Object creation — new
— Code for dynamic dispatch

— Runtime type information —instanceof and casts

L CSE P 501 Winter 2016 L-13

13

Object Layout —|
- i ot ,f'_/;/
=
Typically, allocate fields sequentially v

Follow processor/OS alignment conventions
for struct/object when appropriate/available
— Include padding bytes for alignment as needed

» Use first word of object for pointer to method
table/class information

Objects are allocated on the heap
— No actual bits in the generated code

*

*

*

L C5E P 501 Winter 2016 L-14

14

Object Field Access

* Source
int n = obj.slot;
* X86-64

— Assuming that obj is a local variable in the current
method’s stack frame

movq offset,(%rbp),%rax # load obj ptr
[movq offset,,,(%rax),%rax # load slot
movq %rax,offset (%rbp) # store n
— Same idea used to reference fields of “this”

* Use implicit “this” parameter passed to method instead of a
local variable to get object address

L CSE P 501 Winter 2016 L-15

15

Local Fields

* A method can refer to fields in the receiving
object either explicitly as “this.f” or implicitly
aS i’.rf:H'

— Both compile to the same code —an implicit
“this.” is assumed if not present explicitly

L CSE P 501 Winter 2016 L-165

16

Source Level View
/

What you write:/| What you really get:

int getlt() { | int getlt(Objtype this)
return it; return this.it:
b ;| wee
void setlt{int it) { void setlt(ObjType this, int it) {
this.it=it; this.it =it;
N ——
! i
obj.setlt(42); setlt{obj, 42);
- k= obj.getlt(); k = getlt(obj);
Lhd CSE P 501 Winter 2015 L-17

17

x86-64 “this” Convention (C++)

* “this” is an implicit first parameter to every
non-static method

* Address of object placed in %rdi for every
non-static method call

* Remaining parameters (if any) in %rsi, etc.

* We'll use this convention in our project

L CSE P 501 Winter 2016

L-12

18

MinilJava Method Tables (vtbls)

* Generate these as initialized data in the assembly
language source program

* Need to pick a naming convention for assembly
language labels; suggest:
— For methods, classnameSmethodname
* Would need something more sophisticated for overloading

— For the vtables themselves, classnameS$S

* First method table entry points to superclass
table (we might not use this in our project, but is
helpful if you add instanceof or type cast checks)

L CSE P 501 Winter 2016 L-19

19

Method Tables For Perverse Example
(gcc/as syntax)

tlass One { data
void setTag() {..}
intgetTag() {..}
void setlt(int it) {...}
int getlt() ..}

il OneSs: .quad O # no superclass
——quad OneSsetTag e
__.quad OneSgetTag -/

: ——quad OneSsetlt
class Two extends One { —.quad OneSgetlt i
void setTag(} { ... }
[int getThat({){..} l'—‘TWDE:E:I quad OnesS #superclass
void resetit() { ... } = _.quad TwoSsetTag
]" = .quad OneSgetTag

—-quad OneSsetlt
__.guad OneSgetlt

quad TwoSgetThat

i quad TwoSresetlt

L CSE P 501 Winter 2016 L-20

20

Method Table Layout

Key point: First method entries in Two’s method
table are pointers to methods declared in One in

exactly the same order

— Actual pointers reference code appropriate for
objects of each class (inherited or overridden)

". Compiler knows correct offset for a particular
method pointer regardless of whether that
method is overridden and regardless of the

actual (dynamic) type of the object

L C5E P 501 Winter 2016 L-21

21

Object Creation — new

Steps needed
_/~ Call storage manager (malloc or similar) to get the
raw bits
» {and store O’s if required by the language, e.g., Java)
./ — Store pointer to method table in the first 8 bytes
of the object

J — Call a constructor with “this” pointer to the new
object in %rdi and other parameters as needed
* {Not in Minilava since we don’t have constructors)

+ — Result of new is a pointer to the new object

L C5E P 501 Winter 2016 -2

22

Object Creation

Source

One one = new One(...);
e _}_;-_‘-—u—

x86-64
<" movq
< call
« leaq
v movq

,/mr:wq

« movq

SnBytesNeeded,%rdi
mallocEquiv
OneSs,%rdx
Yordx,0(%rax)
%ra:{,%rdi_ -
%rax,uffﬂettemp{ Yerbp)

" <load constructor arguments>

call
/mqu
MoV

OneS0One
offset__ (%rbp),%rax

temp

Yorax,offset (%rbp)

obj size + 8 (include space for vtbl ptr)
addr of allocated bits returned in %rax
f#t et method table address
store vtbl ptr at beginning of object

set up “this” for constructor
save "this” for later
arguments (if needed)
call ctr if we have one (no vtbl lookup)
f#t recover ptr to object
ft store object reference in variable

L CSE P 501 Winter 2016 L-23

23

Constructor

* Why don’t we need a vtable lookup to find the
right constructor to call?

* Because at compile time we know the actual
class (it says so right after “new”), so we can
generate a call instruction to a known label
— Same with super.method(...) or superclass

constructor calls — at compile time we know all of
the superclasses (need this to compile subclass

and construct method tables), so we know
statically what class “super.method” belongs to

L CSE P 501 Winter 2016 L-24

24

Method Calls

* Steps needed

— Parameter passing: just like an ordinary C
function, except load a pointer to the object in
%rdi as the first (“this”) argument

— Get a pointer to the object’s method table from
the first 8 bytes of the object

— Jump indirectly through the method table

L CSE P 501 Winter 2016 L-25

25

v W

. Sﬂur-ll'é:e .Jllj M——ﬁi‘%’ code
obj.m(...);

* x36-64

" <load arguments in registers as usual> # as needed
v movq fosetam{%rbp},%rdi # first argument is obj ptr (“this”)

Method Call n g\/ F

‘%—fm::wq D{qurm} ,%%rax # load vtable address into %rax
call *offset, (%rax] # call function whose address is at
s~ Rk # known offset in the vtable *

call *(%rax)
or: [“movq Soffset
Lcall *orax

* *Orcan use: [addq Soffset, ,%rax

{%rax} Jorax

[T

—

L CSE P 501 Winter 2016 L-26

26

Runtime Type Checking

* We can use the method table for the class as a
“runtime representation” of the class

— Each class has one vtable at a unique address

* The test for “o instanceof C” is
— Is_0’s method table pointer == &CSS ?
* |f so, result is “true”

— Recursively, get pointer to superclass method table from
the method table and check that

— Stop when you reach Object (or a null pointer, depending
on whether there is a ultimate superclass of everything)
* |f no match by the top of the chain, result is “false”
* Same test as part of check for legal downcast (e.g., how
to test for ClassCastExceptionin (type)obj cast)

L CSE P 501 Winter 2016 L-27

27

Coming (& past) Attractions

* Other IRs besides ASTs
* Code analysis and optimization

* Industrial-strength back end (register
allocation, instruction selection & scheduling)

* Other topics as time allows
— GC? Dynamic languages? JVM? What else?

* And simple code generation for the project

L CSE P 501 Winter 2016 L-28

28

