CSE P 501 — Compilers

LR Parser Construction
Hal Perkins

Winter 2016

Agenda

* LR{O) state construction
 FIRST FOLLOW, and nullable
* Variations: SLR, LR(1), LALR (q

L CSE P 501 Winter 2016

E-2

LR State Machine

Tﬁﬁﬁm—fﬁ

* |dea: Build a DFA that recognizes handles

— Language generated by a CFG is generally not
regular, but

— Language of viable prefixes for a CFG is regular

* So a DFA can be used to recognize handles

— LR Parser reduces when DFA accepts a handle

L CSE P 501 Winter 2016 E-32

Prefixes, Handles, &c (review)
e =< <,m’5)
* If Sis the start symbol of a grammar G,
— It $=>%* g then a.is a sentential form of G
— visaviable prefix of G if there is some derivation
S=>%, 0Aw =>*_ apw and v is a prefix of ap.

— The occurrence of B in apw is a handle of upw

rrm

* Anitemis a marked production (a . at some position
in the right hand side)

— [A ::=J.!XY] [ﬂ.::zX.TY] [A:=XY,]

T

L CSE P 501 Winter 2016 E-4

Building the LR(0) States

* Example grammar

§$':=58§
Su=(L)
S5u=x
L=5
L:=L,5

— We add a production S" with the original start symbol
followed by end of file (S)

* We accept if we reach the end of this production

— Question: What language does this grammar generate?

L CSE P 501 Winter 2016

E-S

0. §'i=5%
1. S:=(L
Start of LR Parse St
T

* |nitially
— Stack is empty
— Input is the right hand side of §/,i.e., S S
— Initial configurationis [S"::=.5 5]

— But, since position is just before S, we are also just
before anything that can be derived from §

L CSE P 501 Winter 2016 E-&

0. §'i=5%

. . 1. S::=(L
Initial state A
s asls

S'ii=., 8¢ —star

Su=.(L)
Sii= ‘__:L completion

A

—

* Astateis just a set of items

— Start: an initial set of items

— Completion (or closure): additional productions whose left
hand side appears to the right of the dot in some item
already in the state

L CSE P 501 Winter 2016 E-¥

0. 5i:=5$
Shift Actions (1) 2 Siox”
A

N
5.:=.5% g
Su=.(L) “Si=X.

» To shift past the x, add a new state with appropriate item(s),
including their closure
— In this case, a single item; the closure adds nothing
— This state will lead to a reduction since no further shift is possible

L CSE P 501 Winter 2016 E-2

0. $'i=5%
Shift Actions (2) 2 iy
3. Lii=5
J ‘:4.;’.::.".}5
Volsa=(L L)
“15=.5% (|Lw=.L,S
“1Su=.(L) L=.5
-[Sn=.X% Snu=.(L)
[5:=.><

* |f we shift past the {, we are at the beginning of L

* The closure adds all productions that start with L, which also
requires adding all productions starting with S

L CSE P 501 Winter 2016 E-9

0. §'i=5%

. 1. S:=(L

Goto Actions A
s asls

J|Su=.(L) {5::= 5. §]
/| S= X T

* Once we reduce S, we’ll pop the rhs from the
stack exposing the first state. Add a goto
transition on S for this.

L CSE P 501 Winter 2016 E-10

10

Basic Operations

* Closure (S)
— Adds all items implied by items already in S

* Goto (/, X)

— | is a set of items

— X is a grammar symbol (terminal or non-terminal)

— Goto moves the dot past the symbol X in all
appropriate items in set /

L CSE P 501 Winter 2016

E-11

11

Closure Algorithm

* Closure(S) =
repeat \
foranyitem[A:=o.Bp]inS

——

for all productions B ;=
add [B:=.v]to S
until S does not change

return S

* Classic example of a fixed-point algorithm

L CSE P 501 Winter 2016 E-12

12

Goto Algorithm

* Goto (I, X) =
set new to the empty set
for each item [A ::= ULX Bl in/
add [A = o X . B] to new

return Closure (new)

* This may create a new state, or may return an
existing one

L CSE P 501 Winter 2016

E-13

13

LR(0) Construction

* First, augment the grammar with an extra
start production §"::=SS

Let T be the set of states
Let £ be the set of edges
* |nitialize T to Closure ([S"::=.5S])

* |Initialize E to empty

L]

L

L CSE P 501 Winter 2016 E-14

14

LR(0) Construction Algorithm

repeat
for eachstate /in T
foreachitem [A::=a . X B]in/
Let new be Goto(/, X)
Add new to T if not present
Add I X5 new to E if not present
until £ and T do not change in this iteration

* Footnote: For symbol S, we don’t compute goto(l, $): instead, we make
this an accept action.

L CSE P 501 Winter 2016 E-15

15

wn
A

0
Example: Statesfor @ 3
(7#’ 51 P j""f?ﬂ :

Thwaa

M~ Gy X —
~ ~

&

L CSE P 501 Winter 2016

16

Building the Parse Tables (1)

* Foreachedge /| 2=J

— if X'is aterminal, put sj in column X, row / of the
action table (shift to state j)

— If X'is a non-terminal, put g/ in column X, row / of

the goto table (go to state)

L CSE P 501 Winter 2016

E-17

17

Building the Parse Tables (2)

* For each state / containing an item
S = S%S], put accept in column S of row /

* Finally, for any state containing

— [A ::=v.] put action rn (reduce) in every
column of row / in the table, where n is the
production number {not a state number)

L CSE P 501 Winter 2016 E-18

18

wn
A

0. =
Example: Tables for ey
i:i?:f,s
e (), S -
53 54 97

l
Q:;,:L«i =
5 b
y |53 oH 4 7

r 3 rJ v3 & F}
57 S%
1 -l " rlov C’I
¥ J
i'j,__; E"L’{ ;f-f'f F":"f p‘"“ﬂ‘/ ‘

L CSE P 501 Winter 2016

E-19

19

Where Do We Stand?

* We have built the LR{0) state machine and
parser tables

— No lookahead yet

— Different variations of LR parsers add lookahead
information, but basic idea of states, closures, and
edges remains the same

 Agrammar is LR(O) if its LR(O) state machine
(equiv. parser tables) has no shift-reduce or
reduce-reduce conflicts.

L C5E P 501 Winter 2016 E-20

20

A Grammar that is not LR(0O)

* Build the state machine and parse tables for a
simple expression grammar

S:=ES
E:=T+E
Eo=1T
=X

L C5E P 501 Winter 2016 E-21

21

0. S::=£%

1. £::=T7+ F
LR(O) Parser for > Fu= T

3. [1i=X
@ Y + 5 E T
S = =5 g2 o3
E:. = aoc
E:= rz s4rz r2
T::= :

55 g G3
r3 r3 r3

rl rl rl

= State 3 is has two possible
actions on +

= shift 4, or reduce 2

= .. Grammar is not LR(0)

L C5E P 501 Winter 2016 E-Z2

22

How can we solve conflicts like this?

* |dea: look at the next symbol after the handle before
deciding whether to reduce

* Easiest: SLR — Simple LR. Reduce only if next input
terminal symbol could follow the nonterminal on the
left of the production in some possible derivation(s)

* More complex: LR and LALR. Store lookahead symbols
in items to keep track of what can follow a particular
instance of a reduction

— LALR used by YACC/Bison/CUP; we won’t examine in detail
— see your favorite compiler book for explanations

L C5E P 501 Winter 2016 E-23

23

SLR Parsers

* |dea: Use information about what can follow a
non-terminal to decide if we should perform a
reduction; don’t reduce if the next input symbol
can’t follow the resulting non-terminal

* We need to be able to compute FOLLOW(A) — the
set of symbols that can follow A in any possible
derivation
—i.e,, tisin FOLLOW(A) if any derivation contains At

— To compute this, we need to compute FIRST(7y) for
strings v that can follow A

L CSE P 501 Winter 2016 E-24

24

Calculating FIRST(y)

* Sounds easy... Ify =X YZ, then FIRST(y) is
FIRST(X), right?

— But what if we have the rule X ::= €7

— In that case, FIRST(y) includes anything that can follow
X, i.e. FOLLOW(X), which includes FIRST(Y) and, if ¥
can derive g, FIRST(Z), and if Zcan derive &, ...

— So computing FIRST and FOLLOW involves knowing
FIRST and FOLLOW for other symbols, as well as which
ones can derive €.

L C5E P 501 Winter 2016 E-25

25

FIRST, FOLLOW, and nullable

* nullable(X) is true if X can derive the empty string

* Given a string v of terminals and non-terminals,
FIRST(vv) is the set of terminals that can begin any
strings derived from vy

— For SLR we only need this for single terminal or non-
terminal symbols, not arbitrary strings v

* FOLLOW(X) is the set of terminals that can
immediately follow X in some derivation

* All three of these are computed together

L CSE P 501 Winter 2016 E-26

26

Computing FIRST, FOLLOW, and
nullable (1)

* |nitialization
set FIRST and FOLLOW to be empty sets
set nullable to false for all non-terminals

set FIRST[a] to a for all terminal symbols a

* Repeatedly apply four simple observations to
update these sets
— Stop when there are no further changes

— Another fixed-point algorithm

L CSE P 501 Winter 2016 E-27

27

Computing FIRST, FOLLOW, and
nullable (2)

repeal
for each productionX:=Y; ¥; ... ¥}
if ¥ ... Y are all nullable {orif k = 0)
[set nullable[X] = true
foreachi from1ltokandeachj fromi+ltok
if ¥, ... Y., are all nullable {orifi=1)
add FIRST[Y,] to FIRST[.X]
if ¥4 <. Y, are all nullable (orifi=k)
add FOLLOW/[X] to FOLLOWIY]

if Yy re all nullable {orif i+1=j)
aﬁa‘ﬁﬁ;ﬁv] to FOLLOW([Y]

Until FIRST, FDLLDW and nullable d).?%/&}ppge u. L[/ "(/ v 7/
r-ll.ll'_.,___,_—'—'— .|L._|....~—
dr LU - ~ —-i‘ 1 c(
7@ or= ¢, Y t [f*f R E L
e umcszﬁyummm-rj
A+t T i e R = S p.i'u’:.'a

28

Example

nullable FIRST FOLLOW
* Grammar N
Cre <)
= X /
| Z o5 6 % G
2 Z::=XYZ D[
9 Y=g y b C J o b
Y Y = @ﬂﬂ @
S y.z
.X” 'J’; 2 mtr C]__,.’Q-J,G'—x
{: X:‘ =3 .@ '
L CSE P 01 Wirter 2016 E-29

29

LR(0) Reduce Actions (review)

* In a LR(O0) parser, if a state contains a
reduction, it is unconditional regardless of the
next input symbol

* Algorithm:
Initialize R to empty
for eachstate/in T
foreachitem [A:=a .| in/
add (/, A ::=) toR

L CSE P 501 Winter 2016 E-20

30

SLR Construction

calculation of reduce actions
* Algorithm:
Initialize R to empty
for each state /in T
foreachitem|[A::=a.]in/
~— for each terminal a in FOLLOW(A)
add (/,a,A:=0)toR

— i.e., reduce o. to A in state / only on lookahead a

L CSE P 501 Winter 2016

This is identical to LR(0O) — states, etc., except for the

E-31

31

L
$+,,

w - — x
onn
vy Wl -

o= alm

SLR Parser for

L] L
I n
] L
] (0]
g o il
[
- [
(2]
L L
[ig] (i
b N o (N L . t N O ¥
L -
i +
I ol
I n oot
OrTIgC
- rlh—.

L _|

LLl
w +

Uy WU W -

L L
-+
- x
- .- .

(TN TNy IRy I

L

=T 4+ E. |«

(6)
—[e

E-32

L C5E P 501 Winter 2016

32

On To LR(1)

* Many practical grammars are SLR
* LR(1) is more powerful yet

* Similar construction, but notion of an item is
more complex, incorporating lookahead
information

L CSE P 501 Winter 2016 E-33

33

LR(1) Items

* AnLR(1)item [A:=a..p, a]is
— A grammar praductionh(A = o)

— A right hand side position (the dot)
— A lookahead symbol (a)

* |dea: This item indicates that o is the top of
the stack and the next input is derivable
from a.

* Full construction: see the book

L CSE P 501 Winter 2016 E-34

34

LR(1) Tradeoffs

* LR(1)

— Pro: extremely precise; largest set of grammars

— Con: potentially very large parse tables with many

states

L C5E P 501 Winter 2016

B35

35

LALR(1)

* Variation of LR(1), but merge any two states
that differ only in lookahead

— Example: these two would be merged
[A :=x ., a]

[A :=x.,Db]

—

L CSE P 501 Winter 2016

E-36

36

LALR(1) vs LR(1)

* LALR(1) tables can have many fewer states than LR(1)

— Somewhat surprising result: will actually have same
number of states as SLR parsers, even though LALR(1) is
more powerful

— After the merge step, acts like SLR parser with “smarter”
FOLLOW sets (can be specific to particular handles)

* LALR(1) may have reduce conflicts where LR(1) would
not (but in practice this doesn’t happen often)

* Most practical bottom-up parser tools are LALR(1)
(e.g., yacc, bison, CUP, ...)

L CSE P 501 Winter 2016 E-37

37

Language Heirarchies

-~

unambiguous grammars

LK)) LR(K)
/ (L) 1\\

N

ambiguo
gramma

us
rs

L CSE P 301 Winter 2016

E-38

38

Coming Attractions

Rest of Parsing...
* LL(k) Parsing — Top-Down
* Recursive Descent Parsers

— What you can do if you want a parser in a hurry
Then...
* AST construction — what do do while you parse!

* Visitor Pattern — how to traverse ASTs for further
processing (type checking, code generation, ...)

L C5E P 501 Winter 2016 E-35

39

