CSE P 501 — Compilers

LR Parsing
Hal Perkins
Winter 2016

L CSE P 501 Winter 2016

0O-1

Agenda

* LR Parsing

L

* Parser States

L]

Table-driven Parsers

Shift-Reduce and Reduce-Reduce conflicts

L CSE P 501 Winter 2016

bo-2

Bottom-Up Parsing .+«

O e

* |dea: Read the input left to right

* Whenever we’ve matched the right hand side
of a production, reduce it to the appropriate
non-terminal and add that non-terminal to

the parse tree

* The upper edge of this partial parse tree is
known as the frontier

L C5E P 501 Winter 2016

0-3

Example

* Grammar

S::=aABe
A:=Abc | b
B:=d

* Bottom-up Parse

L CSE P 501 Winter 2016

D-4

LR(1) Parsing

 We'll look at LR{1) parsers

— Left to right scan, Rightmost derivation, 1 symbol
lookahead

— Almost all practical programming languages have a
LR(1) grammar

— LALR(1), SLR(1), etc. —subsets of LR(1)

* LALR({1) can parse most real languages, tables are more
compact, and is used by YACC/Bison/CUP/etc.

L C5E P 501 Winter 2016 O-5

LR Parsing in Greek

* The bottom-up parser reconstructs a reverse
rightmost derivation

* Given the rightmost derivation

5 13’[31::’[32::’---:}Bn-f:’ﬁ_mzr’ﬁn_: w
the parser will first discover 3, ,=>pB, , then B,,=>0, ;
, etc.

* Parsing terminates when

— P, reduced to § (start symbol, success), or
— No match can be found (syntax error)

LA C5E P 501 Winter 2016 0-6

How Do We Parse with This @%)_

P =i

Key: given what we’ve already seen and the next
input symbol (the lookahead), decide what to do.

Choices:
— Perform a reduction
— Look ahead further

Can reduce A=>[3 if both of these hold:
— A=>[is a valid production, and
— A=>Pis a step in this rightmost derivation

This is known as a shift-reduce parser

L CSE P 501 Winter 2016

o-7

Sentential Forms

* IfS=>% o, the string o is called a sentential form of
the grammar

* In the derivation
§=>pB,=>B,=>...=>B,,=>B,4=>B, = w
each of the [3; are sentential forms

* Asentential form in a rightmost derivation is called a
right-sentential form (similarly for leftmost and left-

sentential)

L C5E P 501 Winter 2016 b-8

Handles

* Informally, a production whose right hand side
matches a substring of the tree frontier that is
part of the rightmost derivation of the current
input string (i.e., the “correct” production)
—Evenif A::=[3is a production, it is a handle only if

P matches the frontier at a point where A ::= 3
was used in this specific derivation

— B may appear in many other places in the frontier
without designating a handle

* Bottom-up parsing is all about finding handles

L C5E P 501 Winter 2016 (I

Handle Examples

* In the derlvatﬂon 4, 2
5=> aABe =>aAde = }aﬂbgde =>abbcde

— abbcde is a right sentential form whose handle is
A::=b at position 2

— aAbcde is a right sentential form whose handle is
A::=Abc at position 4
* Note: some books take the left end of the match as the
position

L C5E P 501 Winter 2016 O-10

10

Handles — The Dragon Book Defn.

* Formally, a handle of a right-sentential form v
is @ production A ::= [and a position iny
where [may be replaced by A to produce the
previous right-sentential form in the rightmost
derivation of y

L C5E P 501 Winter 2016 0-11

11

Implementing Shift-Reduce Parsers

* Key Data structures
— A stack holding the frontier of the tree

— A string with the remaining input (tokens)

* We also need something to encode the rules
that tell us what action to take next, given the
state of the stack and the lookahead symbol

— Typically a table that encodes a finite automata

L CSE P 501 Winter 2016 b-12

12

Shift-Reduce Parser Operations

* Reduce —if the top of the stack is the right
side of a handle A::=[3, pop the right side [3
and push the left side A

* Shift — push the next input symbol onto the
stack

* Accept —announce success

* Error — syntax error discovered

L CSE P 501 Winter 2016

0-13

13

i 5= adbe
Shift-Reduce Example 4= e b
Stack Input Action
S abbcde$S shift
¢ On EEQJ{;T fﬁj#i

bod—= R

fmb}q D ode Lfk
C F ¢ P -
'fc-»/;‘l?{: J:? jl\f“f:‘d_
At Yoo
5 Al i : oo
‘{Em j N
g;ﬁg{ S ﬂ__r.,CE}FJf"

L CSE P 501 Winter 2016 O-14

14

How Do We Automate This?

* Cannot use clairvoyance in a real parser (alas...)

* Defn. Viable prefix — a prefix of a right-sentential

form that can appear on the stack of the shift-reduce
parser

— Equivalent: a prefix of a right-sentential form that does not
continue past the rightmost handle of that sentential form

— In Greek: v is a viable prefix of G if there is some derivation
S=>* oAw =>* [apw and v is a prefix of a.p.

— The occurrence of fin aPpw is a handle of upw

L C5E P 501 Winter 2016 bO-15

15

How Do We Automate This?

* Fact: the set of viable prefixes of a CFG is a
regular language(!)

* |dea: Construct a DFA to recognize viable prefixes
given the stack and remaining input

— Perform reductions when we recognize them

L CSE P 501 Winter 2016 b-16

16

_ 5= aAbBe
DFA for prefixes of A= Jbc |

accept

$
}start:é E;.\:fz\ A :

h/b

L CSE P 501 Winter 2016

b

bo-17

17

Trace

Stack Input
5 abhcdes

;
£ b
XV
$o b
g bC
& o 7
$ o Ao

]

{0 A5%

T

mlay
(T
1
o
(]
-

L CSE P 501 Winter 2016 b-18

18

Observations

* Way too much backtracking

— We want the parser to run in time proportional to
the length of the input

* Where the heck did this DFA come from
anyway?
— From the underlying grammar

— Defer construction details for now

LA C5E P 501 Winter 2016 0-19

19

Avoiding DFA Rescanning

* Observation: no need to restart DFA after a shift.
Stay in the same state and process next token.

* Observation: after a reduction, the contents of the
stack are the same as before except for the new non-
terminal on top

— .. Scanning the stack will take us through the same
transitions as before until the last one

— .. If we record state numbers on the stack, we can go
directly to the appropriate state when we pop the right
hand side of a production from the stack

L CSE P 501 Winter 2016 0-20

20

Stack

* Change the stack to contain pairs of states and
symbols from the grammar
55’_0 xl S‘1){1 52 X.’T 5.*7
— State s, represents the accept (start) state
INot always explicitly on stack — depends on particular presentation)

— When we push a symbol on the stack, push the
symbol plus the FA state

— When we reduce, popping the handle will reveal the
state of the FA just prior to reading the handle

* Observation: in an actuzal parser, only the state numbers are needed since they
implicitly contain the symbaol information. But for explanations / examples it
can help to show both.

L CSE P 501 Winter 2016 0-21

21

Encoding the DFA in a Table

* Ashift-reduce parser’s DFA can be encoded in
two tables

— One row for each state

— action table encodes what to do given the current
state and the next input symbol

— goto table encodes the transitions to take after a
reduction

LA C5E P 501 Winter 2016 0-22

22

Actions (1)

* Given the current state and input symbol, the
main possible actions are

— si —shift the input symbol and state i onto the
stack (i.e., shift and move to state i)
— rj—reduce using grammar production j

* The production number tells us how many
<symbol, state> pairs to pop off the stack
(= number of symbols on rhs of production)

L C5E P 501 Winter 2016 O-Z3

23

Actions (2)

* Other possible action table entries
— accept

— blank — no transition — syntax error

* A LR parser will detect an error as soon as possible on a

left-to-right scan

* A real compiler needs to produce an error message,
recover, and continue parsing when this happens

L C5E P 501 Winter 2016

O-24

24

Goto

* When a reduction is performed using A ::= J5,

we pop |B| <symbol, state> pairs from the

stack revealing a state uncovered s on the top

of the stack

* goto[uncovered s, Al is the new state to push
on the stack when reducing production A ::= 3

(after popping handle B and pushing A)

L C5E P 501 Winter 2016

O-Z3

25

L CSE P 501 Winter 2016 D-26

26

1. §5::= aAbe
LR Parse Table for g: j;;_ 'Sbc
4. Bu=d
State action goto
a b C d e $ A B S
0 acc
1| s2 go
e s4 g3
3 s6 s5 g8
4 r3 r3 r3 r3 r3 I3
5 r4 r4 r4 r4 r4 r4
6 s7
7 r2 r2 r2 r2 r2 r2
8 s9
9 ri ri ri ri ri ri
Ly CSE P 501 Winter 20165 D-Z7

27

LR Parsing Algorithm

tok = scanner.getToken();
while (true) {
5 = top of stack;
if (action[s, tok] =si) {
push tok; push i (state);

tok = scanner. getToken();

refum;
telse {
/ noentry in action table
report synitax ernor;
halt or attempt recovery;

} else if (action[s, tok] =rj) { T

pop 2 * length of right side of

productionj (2*%|pB|);

uncovered s

push left side A of production ;

push state goto[uncovered_s, A];

1
)

top of stack;

L CSE P 501 Winter 2016

telse if (action[s, tok] = accept) 1

D-28

28

Example

do A4S ’ﬁi’ej
s 03

ks
S :‘-f}'jﬁ 1. S::=aAbe
(7
2. A=At
=3 A=h
4. Bii=#
: golfan fralio)
5
Input a b ¢ d e $|A B 5
abbcde$ 40 |s2
ig@_-, c.af{’x
1 |32 g0
.E?GJE
2 54 3
fac‘;"*‘—ﬁ =
Cdug 3 55 5 gs
’;E;"‘ 4 LE3s 3 L3 R r3s 13
“JE Sird 4 r4 rd4 rd4 rd
c,]eﬁ & 57
-EE: 7 E2: 2 b2 rZ r2 k2
E’j g 59
¢ 9 1rl r1 r1 rl1 rl1 ril
<
LW CEE P 501 Winter 2015 D-20

29

LR States

* |dea is that each state encodes

— The set of all possible productions that we could
be looking at, given the current state of the parse,
and

— Where we are in the right hand side of each of
those productions

L C5E P 501 Winter 2016 O-A

30

ltems

* Anitem is a production with a dot in the right

 Example: Items for production A::= XY

hand side
A:=. XY
A:=X.Y
A:=XY.

* |dea: The dot represents a position in the

production

L C5E P 501 Winter 2016 031

31

O
T
>
_h
O
o

N VIR SO
1
=

J 5= adbe.

C
A= A,

O
— Jsu= adBe F.accept | ASi=adse
2 | ©)
ASu=adB | , fSu=ads @
A= .Ac EA:::A.bc o A= A.c
A= b B:=d ®
b d '
@2 ® |

L CSE P 501 Winter 2016

b-32

32

Problems with Grammars

* Grammars can cause problems when
constructing a LR parser

— Shift-reduce conflicts

— Reduce-reduce conflicts

L CSE P 501 Winter 2016 0-33

33

Shift-Reduce Conflicts

* Situation: both a shift and a reduce are
possible at a given point in the parse

(equivalently: in a particular state of the DFA)

* Classic example' if-else statement
.= ifthen 5 | |fthen Selse S

i S
fu.(.:;:J) PP Jf’i “‘-“rh' o = ¥

L CSE P 501 Winter 2016

0-34

34

Parser States for 1. S::=ifthen S
2. S::=ifthen Selse S

* State 3 has a shift-
S::= ,ifthen § :
[® i S . reduce conflict
iﬂhenl . — Can shift past else into
I
[@ S:i=ifthen . § state 4 (s4)
S:u=ifthen . Selse 5 — Can reduce (r1)
51 Su=ifthen S
@ S::=ifthen 5.
S:ui=ifthen 5.else §
alse l (Note: other S ::= . ifthen items
not included in states 2-4 to save
@ 5= ifthen Selse . § space)
L CSE P 501 Wirter 2016 0-35

35

Solving Shift-Reduce Conflicts

* Fix the grammar

— Done in Java reference grammar, others

* Use a parse tool with a “longest match” rule —
i.e., if there is a conflict, choose to shift
instead of reduce
— Does exactly what we want for if-else case

— Guideline: a few shift-reduce conflicts are fine, but
be sure they do what you want (and that this
behavior is guaranteed by the tool specification)

L C5E P 501 Winter 2016 O-3

36

Reduce-Reduce Conflicts

* Situation: two different reductions are
possible in a given state

* Contrived example

S:=A
$:=8
A =X
B =X

L CSE P 501 Winter 2016 0-37

37

Parser States for

5= A
@ Bii= 18

A= X

2 B
@

Aii=X,

B.=X,

A
T W
i
X X

* State 2 has a reduce-
reduce conflict (r3, rd)

L CSE P 501 Winter 2016

bO-38

38

Handling Reduce-Reduce Conflicts

* These normally indicate a serious problem
with the grammar.

* Fixes

— Use a different kind of parser generator that takes
lookahead information into account when
constructing the states

* Most practical tools use this information

— Fix the grammar

L C5E P 501 Winter 2016 0-3

39

Another Reduce-Reduce Conflict

* Suppose the grammar tries to separate
arithmetic and boolean expressions
expr ::=aexp | bexp
aexp ::= aexp * aident | aident
bexp ::= bexp && bident | bident
aident ::= id
bident ::= id
* This will create a reduce-reduce conflict after
recognizing id

L CSE P 501 Winter 2016 O-40

40

Covering Grammars

* Asolutionis to merge aident and bident into a single
non-terminal like ident (or just use id in place of
aident and bident everywhere they appear)

* This is a covering grammar

— Will generate some programs (sentences) that are not
generated by the original grammar

— Use the type checker or other static semantic analysis to
weed out illegal programs later

L C5E P 501 Winter 2016 O-41

41

Coming Attractions

* Constructing LR tables

— We'll present a simple version (SLR(0)) in lecture,
then talk about adding lookahead and then a little
bit about how this relates to LALR(1) used in most
parser generators

* LL parsers and recursive descent

* Continue reading ch. 3

L CSE P 501 Winter 2016 O-42

42

