CSE P 501 — Compilers

Parsing & Context-Free Grammars
Hal Perkins
Winter 2016

L CSE P 501 Winter 2016

-1

Administrivia

* Project partner signup: please find a partner and
fill out the signup form by noon tomorrow if not
done yet (only one form per group, please)

— Watch for spam from CSE GitLab as repos are set up
(save and ignore for now)

* Written HW2 out now, due in a week
* HW1 solution posted in a couple of days

* First part of project — scanner — out later this
week, due in two weeks

— Programming is fairly simple; this is the infrastructure
shakedown cruise

L CSE P 501 Winter 2016 C-2

Agenda for Today

* Parsing overview

* Context free grammars

* Ambiguous grammars

* Reading: Cooper & Torczon 3.1-3.2

— Dragon book is also particularly strong on
grammars and languages

L CSE P 501 Winter 2016

-3

Syntactic Analysis / Parsing

* Goal: Convert token stream to an abstract
syntax tree

* Abstract syntax tree (AST):
— Captures the structural features of the program

— Primary data structure for next phases of
compilation

* Plan

— Study how context-free grammars specify syntax
— Study algorithms for parsing and building ASTs

L CSE P 501 Winter 2016 -4

Context-free Grammars

* The syntax of most programming languages can be
specified by a context-free grammar (CGF)

* Compromise between

— REs: can’t nest or specify recursive structure

— General grammars: too powerful, undecidable
* Context-free grammars are a sweet spot

— Powerful enough to describe nesting, recursion

— Easy to parse; restrictions on general CFGs improve speed
* Not perfect

— Cannot capture semantics, like “must declare every
variable” or “must be 1nt"” — requires later semantic pass

— Can be ambiguous (something we'll deal with)

L CSE P 501 Winter 2016 -5

Derivations and Parse Trees

* Derivation: a sequence of expansion steps,
beginning with a start symbol and leading to a
sequence of terminals

* Parsing: inverse of derivation

— Given a sequence of terminals (aka tokens)
recover (discover) the nonterminals and structure,
i.e., the parse tree (concrete syntax)

L C5E P 501 Winter 2016 C-5

proaran = siatamant | program sistament

siztamait = aeskesit | et
arsigreimt = g = e

Old E)(ample G |t =i e) statement

gxpy =7 | et e 4+ sy

Mu=alb|clililklinl=xlylz

int:=0]1|2]|3|4|5|6]|7|8|%9

o noerfe S
pragﬁfam/\
o statement
statemeant ;'é.!mr

statement
assignstmt

id Expr
‘ fjfl?r

|
b = 2 ;
Ll C5E P EOL Winker 2016 7

Parsing

* Parsing: Given a grammar G and a sentence w
in L(G), traverse the derivation (parse tree) for
w in some standard order and do something
useful at each node

— The tree might not be produced explicitly, but the
control flow of the parser will correspond to a

traversal

L C5E P 501 Winter 2016 -8

“Standard Order”

* For practical reasons we want the parser to be
deterministic {no backtracking), and we want
to examine the source program from /eft to
right.

— (i.e., parse the program in linear time in the order
it appears in the source file)

L C5E P 501 Winter 2016 -9

Common Orderings

* Top-down S
— Start with the root

— Traverse the parse tree depth-first, left-to-right
(leftmost derivation)

— LL(k), recursive-descent j /Q}
* Bottom-up iy l=

— Start at leaves and build up to the root
» Effectively a rightmost derivation in reverse(!)

— LR(k) and subsets (LALR(k), SLR(k), etc.)

L CSE P 501 Winter 2016 -10

10

|H'

“Something Usefu

* At each point (node) in the traversal, perform
some semantic action
— Construct nodes of full parse tree (rare)
— Construct abstract syntax tree (AST) (common)

— Construct linear, lower-level representation (often
produced in later phases of production compilers by
traversing initial AST)

— Generate target code on the fly (done in 1-pass
compilers; not common in production compilers)

+ Can't generate great code in one pass, — but useful if you
need a quick ‘n dirty working compiler

L CSE P 501 Winter 2016 c-11

11

Context-Free Grammars

* Formally, a grammar G is a tuple <N,2,P,5>
where
[— Nis a finite set of non-terminal symbols
[—Zis afinite set of terminal symbols (alphabet)

[— Pis afinite set of productions .

* Asubset of N x {E__E_}*

[—Sis the start symbol, a distinguished element of N

* If not specified otherwise, this is usually assumed to be
the non-terminal on the left of the first production

L C5E P 501 Winter 2016 C-12

12

Standard Notations

—a, b, c elements of 2
-w, X, Y,z elements of 2*
~A, B, C elements of N
X, Y, Z elements of NUZ
~a, B,y elements of (NUZ)*
A—2aorA:=aif<A a>€EP

L CSE P 501 Winter 2016

£-13

13

Derivation Relations (1)
3 N

c aAy=>a By iff Az=pBinP
— derives

* A=>*q if there is a chain of productions
starting with A that generates a.

— transitive closure

L CSE P 501 Winter 2016 C-14

14

Derivation Relations (2)

* WAy=> wpy iffAu=pinP

e il
— derives leftmost

c aAw=> oaPw iffAu=pinP
— derives rightmost

* We will only be interested in leftmost and
rightmost derivations — not random orderings

L CSE P 501 Winter 2016 C-15

15

Languages

* ForAinN, L(A)={w | A=>"w}

* If Sis the start symbol of grammar G, define
L{G) = L(S)
— Nonterminal on left of first rule is taken to be the
start symbol if one is not specified explicitly

L CSE P 501 Winter 2016 C-16

16

3 u..,jpt.,
Reduced Grammars .

co
pores 2Eee
* Grammar G is reduced iff for everyffﬂ:?;;
production A ::= o in G there is a derivation
~£=}*xﬁz=>xgz=>* XYZ
— i.e., no production is useless
* Convention: we will use only reduced

grammars

/ —There are algorithms for pruning useless
productions from grammars — see a formal
language or compiler book for details

L CSE P 501 Winter 2016

C-17

17

Ambiguity

* Grammar G is unambiguous iff every win L(G)
has a unique leftmost (or rightmost) derivation

— Fact: unique leftmost or unique rightmost implies the
other

* A grammar without this property is ambiguous

— Note that other grammars that generate the same
language may be unambiguous, i.e., ambiguity is a
property of grammars, not languages

* We need unambiguous grammars for parsing

LA C5E P 501 Winter 2016 C-18

18

Example: Ambiguous Grammar for
Arithmetic Expressions

expr ::= expr+ expr | expr - expr
| expr * expr | expr [expr | int
int:=0|112|3|4|5|6|7|8]9
* Exercise: show that this is ambiguous

— How? Show two different leftmost or rightmost
derivations for the same string

— Equivalently: show two different parse trees for
the same string

L CSE P 501 Winter 2016 C-19

19

expr u= expr + expr | expr - expr
| expr * expr | expr{ expr | int

Example (cont) im=oiziziziarsieizisis

* Give a leftmost derivation of 2+3*4 and show
the parse tree

e
-, I _-_‘—l—-—.__h_-“ .e K'ﬂ‘?ﬁf-
- 4
f i 0 il T

(! ff’ ﬁf"r
P "

L CSE P 501 Winter 2016 c-20

20

expr u= expr + expr | expr - expr
| expr * expr | expr{ expr | int

Example (cont) me=oiri2iziaisieiziels

* Give a different leftmost derivation of
2+3*4 and show the parse tree

e xps

L CSE P 501 Winter 2016 c-21

21

expr u= expr + expr | expr - expr
| expr * expr | expr{ expr | int

Another example m=oi1i21214151817181

* Give two different derivations of 5+6+7

erpv -é‘)é]vrf
—_____E:(v
/f H—F"‘iﬂi & ,,gx},;#/] [/}
Fr") f;',(;;f E}?‘? expe [B yant”
,‘L-—x‘f"’ ?LJ* i’hL ;ml,d" ,L"’

| J | L+l &
gﬂ'(ﬁ#“}’) (5)—F

(- b)- © o= (4~)

L CSE P 501 Winter 2016 -2

22

What’s going on here?

* The grammar has no notion of precedence or
associatively

* Traditional solution
— Create a non-terminal for each level of precedence
— |solate the corresponding part of the grammar

— Force the parser to recognize higher precedence
subexpressions first

— Use left- or right-recursion for left- or right-associative
operators (non-associative operators are not
recursive)

L CSE P 501 Winter 2016 C-23

23

Classic Expression Grammar
(first used in ALGOL 60)

expr := expr + term | expr—term | term
term ::= term * factor | term / factor | factor
factor ::=int | (expr)
int:=011|2|3|4|5]|6]7

L CSE P 501 Winter 2016

C-24

24

expr = exor + term | exor — ferm | term

C h k z ferm = term * factor | term [factor | factor
ec " faoctor ==int | | expr)
: int:=0|1]2|3|4|5]|6]|7
Derive 2+3 *4
e

& e Rpr- Rﬁ?x‘
' 74"“ X

- R [

e+ \

| T R
'|I |
| L
\\Z* |+ b ‘
i -

25

expr = exor + term | exor — ferm | term

ferm = term * factor | term [factor | factor
C h e C k : factor ==int | | expr)
: int:=0]1]2|3]4|5|6]|7
Derive 5+ 6 + /

XY
/ '—_-""‘---__.:J,.{,-'E.lr'""""1L
ffi{f: /7/
o (_I-{r"""“ pq_(i&m‘"
+~e{*’w‘ []
_ﬁim"r‘ﬁd "PQr'}cu J'f-'ﬂ-,ﬂb
) tu ¥
jn Tt I (
¢ & €)L 7

* Note interaction between left- vs right-recursive rules and
resulting associativity

L CSE P 501 Winter 2016 C-26

26

expr = exor + term | exor — ferm | term

z ferm = term * factor | term [factor | factor
C h e C k " factor z=int | | expr)
; int:=0]1]2|3]4|5|6]|7
Derive 5+ (6 + 7)

L CSE P 501 Winter 2016 C-27

27

Another Classic Example

* Grammar for conditional statements
stmt ;= if (expr) stmt

| if (expr) stmt else stmt

(This is the “dangling else” problem found in many, many
grammars for languages beginning with Algol 60)

— Exercise: show that this is ambiguous

* How?

L C5E P 501 Winter 2016 C-28

28

stmtii=if (expr) stmt

One Derivation
JEeeas

TSR o

if (expr) if (expr) stmt else stmt

L CSE P 501 Winter 2016

| if (expr) stmt else stmt

C-29

29

stmtii=if (expr) stmt
| if (expr) stmt else stmt

Another Derivation

i\

A S|

— e
L CSE P 501 Winter 2016 _-30

30

Solving “if” Ambiguity

* Fix the grammar to separate if statements
with else clause and if statements with no else

— Done in Java reference grammar
— Adds lots of non-terminals
* or, Change the language

— But it'd better be ok to do this — you need to
“own” the language or get permission from owner

* or, Use some ad-hoc rule in the parser
— “else matches closest unpaired if”

L C5E P 501 Winter 2016 C-21

31

Resolving Ambiguity with Grammar (1)

Stmt ::= MatchedStmt | UnmatchedStmt

MatchedStmt ::=... |
if { Expr) MatchedStmt else MatchedStmt
UnmatchedStmt ::= ... |
if (Expr) Stmt |
if { Expr) MatchedStmt else UnmatchedStmt
R

— formal, no additional rules beyond syntax

— can be more obscure than original grammar

L C5E P 501 Winter 2016 C-32

32

Stmt o= MatchedStmt | UnmatchedStmt
Fatchedstmt = .

C h e C I(if { Expr) Matchedstmt else MatchedStmt
UnmatchedStmt == if { Expr) Stmt

if { Expr Matchedstmt else Unmatche dstmt

if (expr) if (expr) stmt else stmt

L CSE P 501 Winter 2016 £-33

33

Resolving Ambiguity with Grammar (2)

* |If you can (re-)design the language, just avoid the
problem entirely _ ol
— /*“g

Stmt :=... | A P
if Expr then Stmt end | =
if Expr then Stmt else Stmt end .

— formal, clear, elegant

— allows sequence of Stmts in then and else branches, no {, }
needed

— extra end required for every if
(But maybe this is a good idea anyway?)

L CSE P 501 Winter 2016 C-34

34

Parser Tools and Operators

* Most parser tools can cope with ambiguous
grammars

— Makes life simpler if used with discipline

* Usually can specify precedence & associativity

— Allows simpler, ambiguous grammar with fewer
nonterminals as basis for parser — let the tool
handle the details (but only when it makes sense)

* {i.e., expr ::= expr+expr | expr¥expr | ... with assoc. &
precedence declarations can be the best solution)

L C5E P 501 Winter 2016 C-35

35

Parser Tools and Ambiguous A=</

A =K

Grammars Py

* Possible rules for resolving other problems:

— Earlier productions in the grammar preferred to
later ones (some danger here if grammar changes)

[— Longest match used if there is a choice (good
solution for dangling if)

* Parser tools normally allow for this

— But be sure that what the tool does is really what

you want

* And that it’s part of the tool spec, so that v2 won't do
something different (that you don’t want!)

L CSE P 501 Winter 2016 C-36

36

Coming Attractions

* Next topic: LR parsing

— Continue reading ch. 3

L CSE P 501 Winter 2016

C-37

37

