CSE P 501 – Compilers

Languages, Automata, Regular Expressions & Scanners Hal Perkins Winter 2016

UW CSE P 501 Winter 2016

Agenda

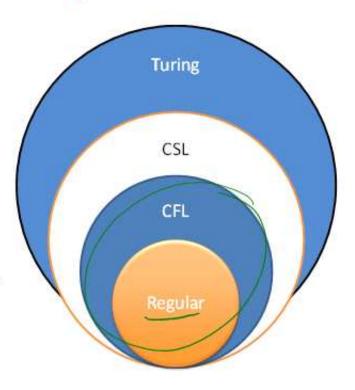
- Quick review of basic concepts of formal grammars
- Regular expressions
- Lexical specification of programming languages
- Using finite automata to recognize regular expressions
- Scanners and Tokens

UW CSE P 501 Winter 2016

Programming Language Specs

- Since the 1960s, the syntax of every significant programming language has been specified by a formal grammar
 - First done in 1959 with BNF (Backus-Naur Form), used to specify ALGOL 60 syntax
 - Borrowed from the linguistics community (Chomsky)

UW CSE P 501 Winter 2016


Formal Languages & Automata Theory (a review on one slide)

- Alphabet: a finite set of symbols and characters
- String: a finite, possibly empty sequence of symbols from an alphabet
- Language: a set of strings (possibly empty or infinite)
- Finite specifications of (possibly infinite) languages
 - Automaton a recognizer; a machine that accepts all strings in a language (and rejects all other strings)
 - Grammar a generator; a system for producing all strings in the language (and no other strings)
- A particular language may be specified by many different grammars and automata
- A grammar or automaton specifies only one language

UW CSE P 501 Winter 2016

Language (Chomsky) hierarchy:

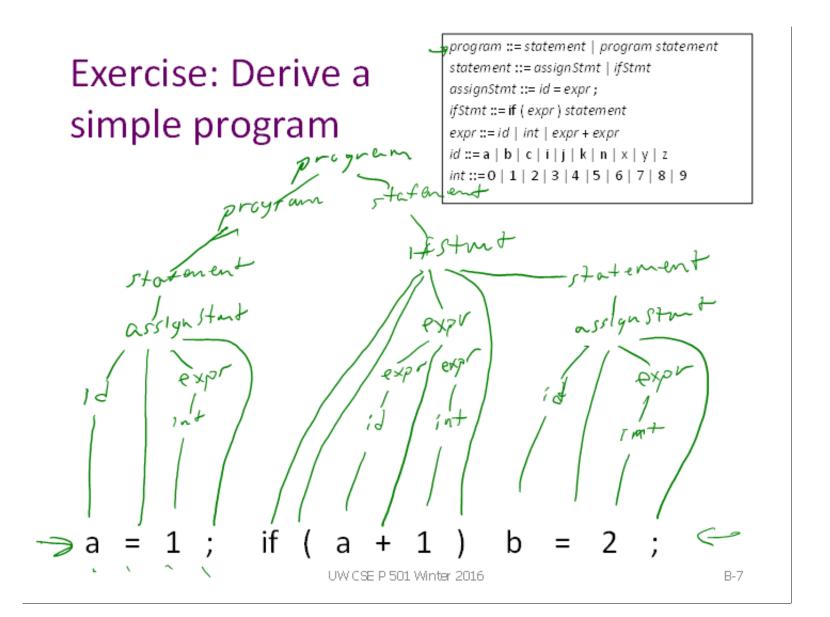
- Regular (Type-3) languages are specified by regular expressions/grammars and finite automata (FSAs)
- Specs and implementation of scanners
- Context-free (Type-2) languages are specified by context-free grammars and pushdown automata (PDAs)
- Specs and implementation of parsers
- Context-sensitive (Type-1) languages ...
 aren't too interesting (for us, at least)
- Recursively-enumerable (Type-0) languages are specified by general grammars and Turing machines

UW CSE P 501 Winter 2016

5

Example: Grammar for a Tiny Toy Language

```
program ::= statement | program statement
statement ::= assignStmt | ifStmt


assignStmt ::= id = expr;

ifStmt ::= if ( expr ) statement
  expr ::= id | int | expr + expr

id ::= a | b | c | i | j | k | n | x | y | z

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```

UW CSE P 501 Winter 2016

Productions

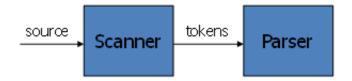
- The rules of a grammar are called productions
- Rules contain
 - Nonterminal symbols: grammar variables (program, statement, id, etc.)
 - Terminal symbols: concrete syntax that appears in programs (a, b, c, 0, 1, if, =, (,), ...
- Meaning of
 - nonterminal ::= <sequence of terminals and nonterminals>
 - In a derivation, an instance of nonterminal can be replaced by the sequence of terminals and nonterminals on the right of the production
- Often there are several productions for a nonterminal can choose any at different points of a derivation

UW CSE P 501 Winter 2016

Alternative Notations

- There are several syntax notations for productions in common use; all mean the same thing
- ifStmt ::= if (expr) statement
- \sim ifStmt → if (expr) statement
- _ <ifStmt> ::= if (<expr>) <statement>

UW CSE P 501 Winter 2016


Parsing

- Parsing: reconstruct the derivation (syntactic structure) of a program
- In principle, a single recognizer could work directly from a concrete, character-bycharacter grammar
- In practice this is never done

UW CSE P 501 Winter 2016

Parsing & Scanning

- In real compilers the recognizer is split into two phases
 - Scanner: translate input characters to tokens
 - Also, report lexical errors like illegal characters and illegal symbols
 - Parser: read token stream and reconstruct the derivation

UW CSE P 501 Winter 2016

Why Separate the Scanner and Parser?

- Simplicity & Separation of Concerns
 - Scanner hides details from parser (comments, whitespace, input files, etc.)
 - Parser is easier to build; has simpler input stream (tokens) / narrow interface
- Efficiency
 - Scanner recognizes regular expressions proper subset of context free grammars
 - (But still often consumes a surprising amount of the compiler's total execution time)

UW CSE P 501 Winter 2016

But ...

- Not always possible to separate cleanly
- Example: C/C++/Java type vs identifier
 - Parser would like to know which names are types and which are identifiers, but...
 - Scanner doesn't know how things are declared
- So we hack around it somehow...
 - Either use simpler grammar and disambiguate later, or communicate between scanner & parser
 - Engineering issue: try to keep interfaces as simple & clean as possible

UW CSE P 501 Winter 2016

Typical Tokens in Programming Languages

- Operators & Punctuation
 - <u>+ * / () { } [] ; ; ; ; < <= == = != ! ...</u>
 - Each of these is a distinct lexical class
- Keywords
 - if while for goto return switch void ...
 - Each of these is also a distinct lexical class (not a string)
- Identifiers
 - A single ID lexical class, but parameterized by actual id
- Integer constants
 - A single INT lexical class, but parameterized by int value
- · Other constants, etc.

UW CSE P 501 Winter 2016

Principle of Longest Match

 In most languages, the scanner should pick the longest possible string to make up the next token if there is a choice

RETURN ID(maybe) NEQ ID(iffy) SCOLON

i.e., != is one token, not two; "iffy" is an ID, not IF followed by ID(fy)

UW CSE P 501 Winter 2016

Lexical Complications

- Most modern languages are free-form
 - Layout doesn't matter
 - Whitespace separates tokens
- Alternatives
 - Fortran line oriented
 - Haskell, Python indentation and layout can imply grouping
- And other confusions
 - In C++ or Java, is >> a shift operator or the end of two nested templates or generic classes?

UW CSE P 501 Winter 2016

Regular Expressions and FAs

 The lexical grammar (structure) of most programming languages can be specified with regular expressions

(Sometimes a little cheating is needed)

- Tokens can be recognized by a deterministic finite automaton
 - Can be either table-driven or built by hand based on lexical grammar

UW CSE P 501 Winter 2016

Regular Expressions

- Defined over some alphabet Σ
 - For programming languages, alphabet is usually ASCII or Unicode
- If <u>re</u> is a regular expression, <u>L(re)</u> is the language (set of strings) generated by <u>re</u>

UW CSE P 501 Winter 2016

Fundamental REs

re	<i>L</i> (<i>re</i>)	Notes
a	{ a }	Singleton set, for each a in Σ
3	{ε}	Empty string
Ø	{}	Empty language

UW CSE P 501 Winter 2016

Operations on REs

re	L(re)	Notes
rs	L(r)L(s)	Concatenation
r s	L(r)∪ L(s)	Combination (union)
r*	L(r)*	0 or more occurrences (Kleene closure)

- Precedence: * (highest), concatenation, | (lowest)
- Parentheses can be used to group REs as needed
- In "real" regular expression tools, need some way to "escape" literal '*' or '|' characters vs. operatosr – but don't worry or use different fonts for math. regexps.

UW CSE P 501 Winter 2016

Examples

	re	Meaning
	+	single + character
	!	single! character
	=	single = character
٦	!=	2 character sequence "!="
	×yzzy	5 character sequence "xyzzy"
	(1 0)*	0 or more binary digits
_	(1 0)(1 0)*	1 or more binary digits
	0 1(0 1)*	sequence of binary digits with no leading 0's, except for 0 itself

UW CSE P 501 Winter 2016

Derived Operators

 The basic operations generate all possible regular expressions, but there are common abbreviations used for convenience. Some examples:

Abbr.	Meaning	Notes
r+	(rr*)	1 or more occurrences
r?	(r ε)	0 or 1 occurrence
[a-z]	(a b z)	1 character in given range
[abxyz]	$(a b \times y z)$	1 of the given characters

UW CSE P 501 Winter 2016

More Examples

re	Meaning
[abc]+	lormère a's b's c's
[abc]*	0 grmene
[0-9]+	non-empty digit strong
[1-9][0-9]*	Lecland Int no Leading O
[a-zA-Z][a-zA-Z0-9_]*	12

UW CSE P 501 Winter 2016

Abbreviations / Naming

 Many systems allow naming abbreviations to make writing and reading definitions or specifications easier

name ::= *re*

 Restriction: abbreviations may not be circular (recursive) either directly or indirectly (else would be non-regular)

UW CSE P 501 Winter 2016

Example

Possible syntax for numeric constants

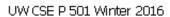
```
digit ::= [0-9]
digits ::= digit+
number ::= digits ( . digits )?
( [eE] (+ | -)? digits ) ?
```

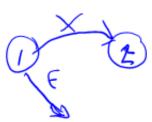
1,0 3,14e12 1,0 4,1 3e⁴ 3e

- How would you describe this set in English?
- What are some examples of legal constants (strings) generated by number?

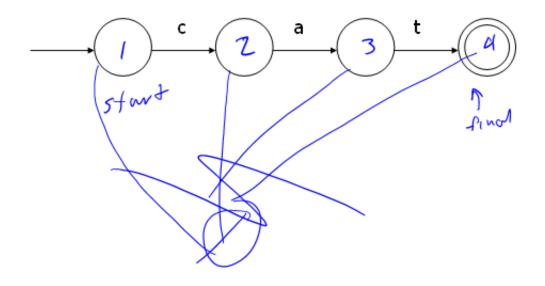
UW CSE P 501 Winter 2016

Recognizing REs


- Finite automata can be used to recognize strings generated by regular expressions
- Can build by hand or automatically
 - Reasonably straightforward, and can be done systematically
 - Tools like Lex, Flex, JFlex et seq do this automatically, given a set of Res
 - Same techniques used for grep, sed, other regular expression packages/tools


UW CSE P 501 Winter 2016

Finite State Automaton

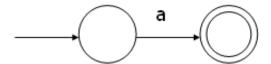

- A finite set of states
 - One marked as initial state
 - One or more marked as final states
 - States sometimes labeled or numbered
- A set of transitions from state to state
 - Each labeled with symbol from Σ, or ε
- Operate by reading input symbols (usually characters)
 - Transition can be taken if labeled with current symbol
 - ε-transition can be taken at any time
- Accept when final state reached & no more input
 - Slightly different in a scanner where the FSA is a subroutine that accepts the longest input string matching a token regular expression, starting at the current location in the input
- Reject if no transition possible, or no more input and not in final state (DFA)

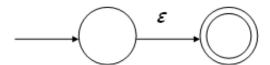
Example: FSA for "cat"

UW CSE P 501 Winter 2016

DFA vs NFA

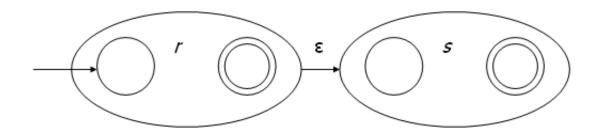
- Deterministic Finite Automata (DFA)
 - No choice of which transition to take under any condition
 - No ε transitions (arcs)
- Non-deterministic Finite Automata (NFA)
 - Choice of transition in at least one case
 - Accept if some way to reach a final state on given input
 - Reject if no possible way to final state
 - i.e., may need to guess right path or backtrack

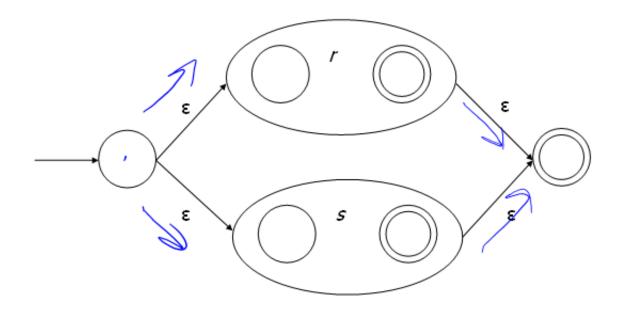

UW CSE P 501 Winter 2016


FAs in Scanners

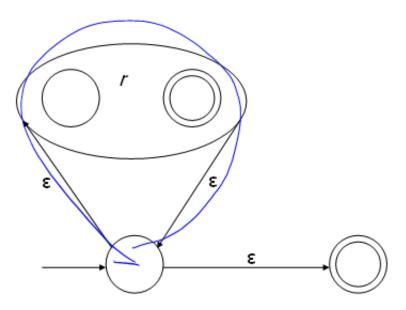
- Want DFA for speed (no backtracking)
- But conversion from regular expressions to NFA is easy
- Fortunately, there is a well-defined procedure for converting a NFA to an equivalent DFA (subset construction – will not cover in detail)

UW CSE P 501 Winter 2016

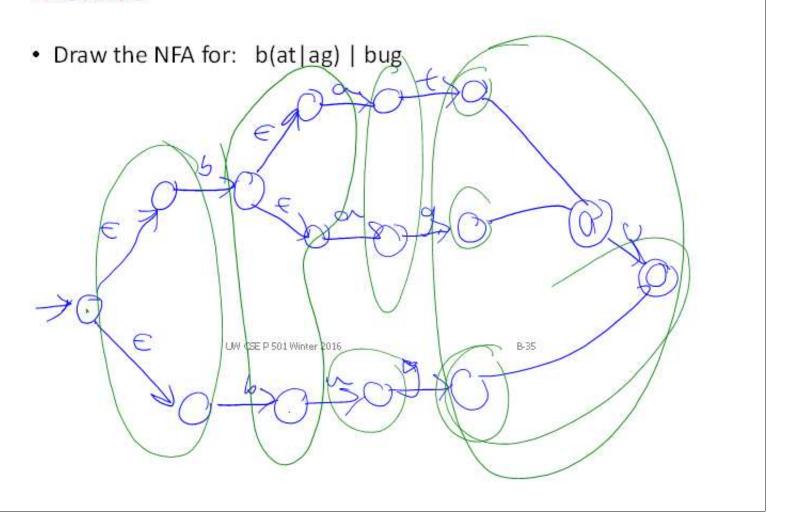

From RE to NFA: base cases


UW CSE P 501 Winter 2016

rs


UW CSE P 501 Winter 2016

r | s


UW CSE P 501 Winter 2016

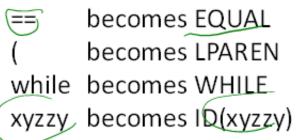
UW CSE P 501 Winter 2016

Exercise

From NFA to DFA

- Subset construction
 - Construct a DFA from the NFA, where each DFA state represents a set of NFA states
- Key idea
 - State of the DFA after reading some input is the set of all NFA states that could have reached after reading the same input
- Algorithm: example of a fixed-point computation
- If NFA has n states, DFA has at most 2ⁿ states
 - => DFA is finite, can construct in finite # steps
- Resulting DFA may have more states than needed
 - See books for construction and minimization algorithms

UW CSE P 501 Winter 2016


Exercise

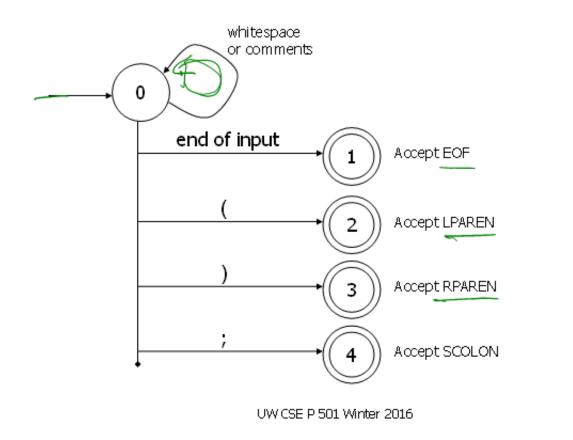
• Build DFA for b(at | ag) | bug, given the NFA

UW CSE P 501 Winter 2016

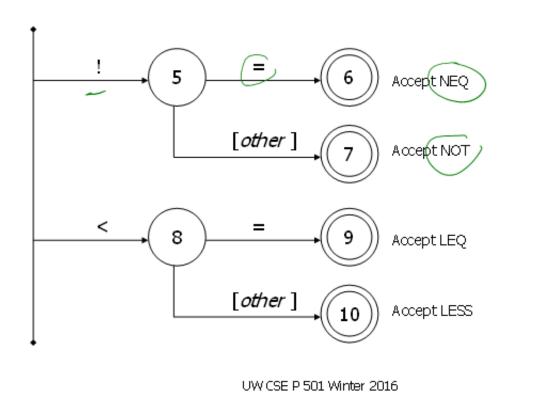
To Tokens

- A scanner is a DFA that finds the next token each time it is called
- Every "final" state of a DFA emits (returns) a token
- Tokens are the internal compiler names for the lexemes

- You choose the names
- Also, there may be additional data ... \r\n might count lines; tokens might include line numbers

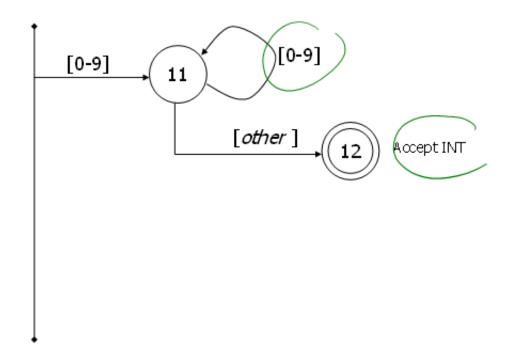

UW CSE P 501 Winter 2016

Example: DFA for hand-written scanner

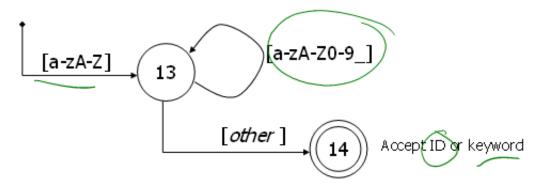

- Idea: show a hand-written DFA for some typical programming language constructs
 - Then use to construct hand-written scanner
- Setting: Scanner is called whenever the parser needs a new token
 - Scanner stores current position in input
 - From there, use a DFA to recognize the longest possible input sequence that makes up a token and return that token; save updated position for next time
- Disclaimer: Example for illustration only you'll use tools for the course project

UW CSE P 501 Winter 2016

Scanner DFA Example (1)



Scanner DFA Example (2)


41

Scanner DFA Example (3)

UW CSE P 501 Winter 2016

Scanner DFA Example (4)

- Strategies for handling identifiers vs keywords
 - Hand-written scanner: look up identifier-like things in table of keywords to classify (good application of perfect hashing)
 - Machine-generated scanner: generate DFA will appropriate transitions to recognize keywords
 - Lots 'o states, but efficient (no extra lookup step)

UW CSE P 501 Winter 2016

DFA => Code

- Option 1: Implement by hand using procedures
 - one procedure for each token
 - each procedure reads one character
 - choices implemented using if and switch statements
- Pros
 - straightforward to write
 - fast
- Cons
 - a fair amount of tedious work
 - may have subtle differences from the language specification

UW CSE P 501 Winter 2016

DFA => Code [continued]

- Option 1a: Like option 1, but structured as a single procedure with multiple return points
 - choices implemented using if and switch statements
- Pros
 - also straightforward to write
 - faster
- Cons
 - a fair amount of tedious work
 - may have subtle differences from the language specification

UW CSE P 501 Winter 2016

DFA => code [continued]

- Option 2: use tool to generate table driven scanner
 - Rows: states of DFA
 - Columns: input characters
 - Entries: action
 - · Go to next state
 - Accept token, go to start state
 - Error
- Pros
 - Convenient
 - Exactly matches specification, if tool generated
- Cons
 - "Magic"

UW CSE P 501 Winter 2016

DFA => code [continued]

- Option 2a: use tool to generate scanner
 - Transitions embedded in the code
 - Choices use conditional statements, loops
- Pros
 - Convenient
 - Exactly matches specification, if tool generated
- Cons
 - "Magic"
 - Lots of code big but potentially quite fast
 - Would never write something like this by hand, but can generate it easily enough

UW CSE P 501 Winter 2016

Implementing a Scanner by Hand – Token Representation

A token is a simple, tagged structure

UW CSE P 501 Winter 2016

Simple Scanner Example

```
// global state and methods
static char nextch; // next unprocessed input character
// advance to next input char
void getch() { ... }

// skip whitespace and comments
void skipWhitespace() { ... }
```

UW CSE P 501 Winter 2016

Scanner getToken() method

```
// return next input token
public Token getToken() {
   Token result;

   skipWhiteSpace();

   if (no more input) {
      result = new Token(Token.EOF); return result;
   }

   switch(nextch) {
      case '(': result = new Token(Token.LPAREN); getch(); return result;
      case ')': result = new Token(Token.RPAREN); getch(); return result;
      case ';': result = new Token(Token.SCOLON); getch(); return result;
      // etc. ...
```

UW CSE P 501 Winter 2016

getToken() (2)

```
case '!': // ! or !=
  getch();
  if (nextch == '=') {
    result = new Token(Token.NEQ); getch(); return result;
  } else {
    result = new Token(Token.NOT); return result;
  }

case '<': // < or <=
    getch();
  if (nextch == '=') {
    result = new Token(Token.LEQ); getch(); return result;
  } else {
    result = new Token(Token.LESS); return result;
  }

// etc. ...</pre>
```

UW CSE P 501 Winter 2016

getToken() (3)

```
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
    // integer constant
    String num = nextch;
    getch();
    while (nextch is a digit) {
        num = num + nextch; getch();
    }
    result = new Token(Token.INT, Integer(num).intValue());
    return result;
```

UW CSE P 501 Winter 2016

getToken() (4)

```
case 'a': ... case 'z':
  case 'A': ... case 'Z': // id or keyword
  string s = nextch; getch();
  while (nextch is a letter, digit, or underscore) {
    s = s + nextch; getch();
  }
  if (s is a keyword) {
    result = new Token(keywordTable.getKind(s));
  } else {
    result = new Token(Token.ID, s);
  }
  return result;
```

UW CSE P 501 Winter 2016

MiniJava Scanner Generation

- We'll use the jflex tool to automatically create a scanner from a specification file,
- We'll use the CUP tool to automatically create a parser from a specification file,
- Token class is shared by jflex and CUP. Lexical classes are listed in CUP's input file and it generates the token class definition.

UW CSE P 501 Winter 2016

TODO & Coming Attractions

- Homework this week: paper exercises on regular expressions & automata. Due Monday night
- Find a partner for the project and fill out partner info form on web site by next week
- · Next topic: parsing
 - Will do LR parsing first we need this for the project, then LL (recursive-descent) parsing, which you should also know
 - Good time to start reading ahead

UW CSE P 501 Winter 2016