CSE P 501 – Compilers

Loops
Hal Perkins
Autumn 2011
What’s a Loop?

- In a control flow graph, a loop is a set of nodes S such that:
 - S includes a *header node* h
 - From any node in S there is a path of directed edges leading to h
 - There is a path from h to any node in S
 - There is no edge from any node outside S to any node in S other than h
Reducible Flow Graphs

- In a reducible flow graph, any two loops are either nested or disjoint.
- Roughly, to discover if a flow graph is reducible, repeatedly delete edges and collapse together pairs of nodes \((x,y)\) where \(x\) is the only predecessor of \(y\).
- If the graph can be reduced to a single node it is reducible.
 - Caution: this is the “powerpoint” version of the definition – see a good compiler book for the careful details.
Example: Is this Reducible?
Example: Is this Reducible?
Reducible Flow Graphs in Practice

- Common control-flow constructs yield reducible flow graphs
 - if-then[-else], while, do, for, break(!)
- A C function without goto will always be reducible
- Many dataflow analysis algorithms are very efficient on reducible graphs, but...
- We don’t need to assume reducible control-flow graphs to handle loops
Finding Loops in Flow Graphs

- We use *dominators* for this

- Recall
 - Every control flow graph has a unique start node s_0
 - Node x dominates node y if every path from s_0 to y must go through x
 - A node x dominates itself
Immediate Dominators

- Every node \(n \) has a single *immediate dominator* \(\text{idom}(n) \)
 - \(\text{idom}(n) \) differs from \(n \)
 - \(\text{idom}(n) \) dominates \(n \)
 - \(\text{idom}(n) \) does not dominate any other dominator of \(n \)

- Fact (er, theorem): If \(a \) dominates \(n \) and \(b \) dominates \(n \), then either \(a \) dominates \(b \) or \(b \) dominates \(a \)
 - \(\therefore \) \(\text{idom}(n) \) is unique
Back Edges & Loops

- A flow graph edge from a node n to a node h that dominates n is a back edge.
- For every back edge there is a corresponding subgraph of the flow graph that is a loop.
Natural Loops

- If \(h \) dominates \(n \) and \(n \rightarrow h \) is a back edge, then the *natural loop* of that back edge is the set of nodes \(x \) such that:
 - \(h \) dominates \(x \)
 - There is a path from \(x \) to \(n \) not containing \(h \)
- \(h \) is the *header* of this loop
- Standard loop optimizations can cope with loops whether they are natural or not
Inner Loops

- Inner loops are more important for optimization because most execution time is expected to be spent there.
- If two loops share a header, it is hard to tell which one is "inner.
- Common way to handle this is to merge natural loops with the same header.
Inner (nested) loops

- Suppose
 - A and B are loops with headers a and b
 - $a \neq b$
 - b is in A

- Then
 - The nodes of B are a proper subset of A
 - B is nested in A, or B is the *inner loop*
Loop-Nest Tree

Given a flow graph G

1. Compute the dominators of G
2. Construct the dominator tree
3. Find the natural loops (thus all loop-header nodes)
4. For each loop header h, merge all natural loops of h into a single loop: loop[h]
5. Construct a tree of loop headers s.t. h_1 is above h_2 if h_2 is in loop[h_1]
Loop-Nest Tree details

- Leaves of this tree are the innermost loops
- Need to put all non-loop nodes somewhere
 - Convention: lump these into the root of the loop-nest tree
Loop Preheader

- Often we need a place to park code right before the beginning of a loop
- Easy if there is a single node preceding the loop header \(h \)
- But this isn’t the case in general
- So insert a *preheader* node \(p \)
 - Include an edge \(p \rightarrow h \)
 - Change all edges \(x \rightarrow h \) to be \(x \rightarrow p \)
Loop-Invariant Computations

- Idea: If $x := a1 \text{ op } a2$ always does the same thing each time around the loop, we’d like to *hoist* it and do it once outside the loop.

- But can’t always tell if $a1$ and $a2$ will have the same value.
 - Need a conservative (safe) approximation.
Loop-Invariant Computations

- d: x := a1 op a2 is loop-invariant if for each a_i
 - a_i is a constant, or
 - All the definitions of a_i that reach d are outside the loop, or
 - Only one definition of a_i reaches d, and that definition is loop invariant
- Use this to build an iterative algorithm
 - Base cases: constants and operands defined outside the loop
 - Then: repeatedly find definitions with loop-invariant operands
Hoisting

- Assume that $d: x := a1 \text{ op } a2$ is loop invariant. We can hoist it to the loop preheader if
 - d dominates all loop exits where x is live-out, and
 - There is only one definition of x in the loop, and
 - x is not live-out of the loop preheader
- Need to modify this if $a1 \text{ op } a2$ could have side effects or raise an exception
Hoisting: Possible?

- Example 1
 L0: t := 0
 L1: i := i + 1
 d: t := a op b
 M[i] := t
 if i < n goto L1
 L2: x := t

- Example 2
 L0: t := 0
 L1: if i ≥ n goto L2
 i := i + 1
 t := a op b
 M[i] := t
 if i < n goto L1
 L2: x := t
Hoisting: Possible?

Example 3

L0: \(t := 0 \)
L1: \(i := i + 1 \)
\(d: \ t := a \ op \ b \)
\(\rightarrow t := 0 \)
\(M[i] := t \)
if \(i < n \) goto L1
L2: \(x := t \)

Example 4

L0: \(t := 0 \)
L1: \(M[j] := t \)
\(i := i + 1 \)
\(d: \ t := a \ op \ b \)
\(M[i] := t \)
if \(i < n \) goto L1
L2: \(x := t \)
Induction Variables

- Suppose inside a loop
 - Variable i is incremented or decremented
 - Variable j is set to $i \times c + d$ where c and d are loop-invariant
- Then we can calculate j’s value without using i
 - Whenever i is incremented by a, increment j by $c \times a$
Example

- **Original**

  ```plaintext
  s := 0  
i := 0  
L1: if i ≥ n goto L2 
j := i*4  
k := j+a  
x := M[k]  
s := s+x  
i := i+1  
goto L1  
L2: 
  ```

- **To optimize, do...**

 - Induction-variable analysis to discover i and j are related induction variables
 - Strength reduction to replace *4 with an addition
 - Induction-variable elimination to replace i ≥ n
 - Assorted copy propagation
Result

- **Original**
 - \(s := 0 \)
 - \(i := 0 \)
 - \(L1: \text{if } i \geq n \text{ goto } L2 \)
 - \(j := i \times 4 \)
 - \(k := j + a \)
 - \(x := M[k] \)
 - \(s := s + x \)
 - \(i := i + 1 \)
 - \(\text{goto } L1 \)
 - \(L2: \)

- **Transformed**
 - \(s := 0 \)
 - \(k' := a \)
 - \(b := n \times 4 \)
 - \(c := a + b \)
 - \(L1: \text{if } k' \geq c \text{ goto } L2 \)
 - \(x := M[k'] \)
 - \(s := s + x \)
 - \(k' := k' + 4 \)
 - \(\text{goto } L1 \)
 - \(L2: \)

Details are somewhat messy – see your favorite compiler book.
Basic and Derived Induction Variables

- Variable i is a *basic induction variable* in loop L with header h if the only definitions of i in L have the form $i := i \pm c$ where c is loop invariant.

- Variable k is a *derived induction variable* in L if:
 - There is only one definition of k in L of the form $k := j \cdot c$ or $k := j + d$ where j is an induction variable and c, d are loop-invariant, and
 - if j is a derived variable in the family of i, then:
 - The only definition of j that reaches k is the one in the loop, and
 - there is no definition of i on any path between the definition of j and the definition of k.
Optimizing Induction Variables

- Strength reduction: if a derived induction variable is defined with $j:=i*c$, try to replace it with an addition inside the loop.
- Elimination: after strength reduction some induction variables are not used or are only compared to loop-invariant variables; delete them.
- Rewrite comparisons: If a variable is used only in comparisons against loop-invariant variables and in its own definition, modify the comparison to use a related induction variable.
Loop Unrolling

- If the body of a loop is small, most of the time is spent in the "increment and test" code

- Idea: reduce overhead by *unrolling* – put two or more copies of the loop body inside the loop
Loop Unrolling

- Basic idea: Given loop L with header node h and back edges \(s_i \rightarrow h \)
 1. Copy the nodes to make loop \(L' \) with header \(h' \) and back edges \(s_i' \rightarrow h' \)
 2. Change all backedges in \(L \) from \(s_i \rightarrow h \) to \(s_i \rightarrow h' \)
 3. Change all back edges in \(L' \) from \(s_i' \rightarrow h' \) to \(s_i' \rightarrow h \)
Unrolling Algorithm Results

Before

L1: \(x := M[i] \)
\(s := s + x \)
\(i := i + 4 \)
if \(i < n \) goto L1 else L2

L2:

After

L1: \(x := M[i] \)
\(s := s + x \)
\(i := i + 4 \)
if \(i < n \) goto L1' else L2

L1': \(x := M[i] \)
\(s := s + x \)
\(i := i + 4 \)
if \(i < n \) goto L1 else L2

L2:
Hmmm....

- Not so great – just code bloat
- But: use induction variables and various loop transformations to clean up
After Some Optimizations

Before

L1: x := M[i]
 s := s + x
 i := i + 4
 if i<n goto L1' else L2
L1': x := M[i]
 s := s + x
 i := i + 4
 if i<n goto L1 else L2
L2:

After

L1: x := M[i] ←
 s := s + x
 x := M[i+4] ←
 i := i + 8
 if i<n goto L1 else L2
L2:
Still Broken...

- But in a different, better(?) way
- Good code, but only correct if original number of loop iterations was even
- Fix: add an epilogue to handle the "odd" leftover iteration
Fixed

Before
L1: \(x := M[i] \)
 \(s := s + x \)
 \(x := M[i+4] \)
 \(s := s + x \)
 \(i := i + 8 \)
 if \(i < n \) goto L1 else L2
L2:

After
if \(i < n-8 \) goto L1 else L2
L1: \(x := M[i] \)
 \(s := s + x \)
 \(x := M[i+4] \)
 \(s := s + x \)
 \(i := i + 8 \)
 if \(i < n-8 \) goto L1 else L2
L2: \(x := M[i] \)
 \(s := s + x \)
 \(i := i + 4 \)
 if \(i < n \) goto L2 else L3
L3:
Postscript

- This example only unrolls the loop by a factor of 2
- More typically, unroll by a factor of K
 - Then need an epilogue that is a loop like the original that iterates up to K-1 times
Memory Hierarchies

- One of the great triumphs of computer design
- Effect is a large, fast memory
- Reality is a series of progressively larger, slower, cheaper stores, with frequently accessed data automatically staged to faster storage (cache, main storage, disk)
- Programmer/compiler typically treats it as one large store. Bug or feature?