Loops
Hal Perkins
Autumn 2011
Agenda

- Loop optimizations
 - Dominators – discovering loops
 - Loop invariant calculations
 - Loop transformations
- A quick look at some memory hierarchy issues

- Largely based on material in Appel ch. 18, 21; similar material in other books
Loops

- Much of the execution time of programs is spent here.
- It is worthwhile to make loops go faster.
- We want to figure out how to recognize loops and figure out how to "improve" them.
What’s a Loop?

- In a control flow graph, a loop is a set of nodes S such that:
 - S includes a header node h
 - From any node in S there is a path of directed edges leading to h
 - There is a path from h to any node in S
 - There is no edge from any node outside S to any node in S other than h
Entries and Exits

- In a loop
 - An *entry node* is one with some predecessor outside the loop
 - An *exit node* is one that has a successor outside the loop
- Corollary of preceding definitions: A loop may have multiple exit nodes, but only one entry node
Reducible Flow Graphs

- In a reducible flow graph, any two loops are either nested or disjoint.
- Roughly, to discover if a flow graph is reducible, repeatedly delete edges and collapse together pairs of nodes \((x,y)\) where \(x\) is the only predecessor of \(y\).
- If the graph can be reduced to a single node it is reducible.
 - Caution: this is the “powerpoint” version of the definition – see a good compiler book for the careful details.
Example: Is this Reducible?
Example: Is this Reducible?
Reducible Flow Graphs in Practice

- Common control-flow constructs yield reducible flow graphs
 - if-then[-else], while, do, for, break(!)
- A C function without goto will always be reducible
- Many dataflow analysis algorithms are very efficient on reducible graphs, but...
- We don’t need to assume reducible control-flow graphs to handle loops
Finding Loops in Flow Graphs

- We use *dominators* for this
- Recall
 - Every control flow graph has a unique start node s_0
 - Node x dominates node y if every path from s_0 to y must go through x
 - A node x dominates itself
Calculating Dominator Sets

- \(D[n] \) is the set of nodes that dominate \(n \)
 - \(D[s0] = \{ s0 \} \)
 - \(D[n] = \{ n \} \cup \left(\bigcup_{p \in \text{pred}[n]} D[p] \right) \)
- Set up an iterative analysis as usual to solve this
 - Except initially each \(D[n] \) must be all nodes in the graph – updates make these sets smaller if changed
Immediate Dominators

- Every node n has a single *immediate dominator* $\text{idom}(n)$
 - $\text{idom}(n)$ differs from n
 - $\text{idom}(n)$ dominates n
 - $\text{idom}(n)$ does not dominate any other dominator of n

- Fact (er, theorem): If a dominates n and b dominates n, then either a dominates b or b dominates a
 - $\therefore \text{idom}(n)$ is unique
Dominator Tree

- A *dominator tree* is constructed from a flowgraph by drawing an edge from every node in \(n \) to \(\text{idom}(n) \)
 - This will be a tree. *Why?*
Example

<table>
<thead>
<tr>
<th>node</th>
<th>dom</th>
<th>idom</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1,2,3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1,2,4</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1,2,4,5</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>1,2,4,6</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>1,2,4,7</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>1,2,4,5,8</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>1,2,4,5,8,9</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>1,2,4,5,8,9,10</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>1,2,4,5,8,9,10</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>1,2,4,5,7,11</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>1,2,4,7,11,12</td>
<td>11</td>
</tr>
</tbody>
</table>

11/16/2011
Back Edges & Loops

- A flow graph edge from a node n to a node h that dominates n is a *back edge*.
- For every back edge there is a corresponding subgraph of the flow graph that is a loop.
Natural Loops

- If \(h \) dominates \(n \) and \(n \rightarrow h \) is a back edge, then the *natural loop* of that back edge is the set of nodes \(x \) such that:
 - \(h \) dominates \(x \)
 - There is a path from \(x \) to \(n \) not containing \(h \)
 - \(h \) is the *header* of this loop
- Standard loop optimizations can cope with loops whether they are natural or not
Inner Loops

- Inner loops are more important for optimization because most execution time is expected to be spent there.
- If two loops share a header, it is hard to tell which one is "inner".
 - Common way to handle this is to merge natural loops with the same header.
Inner (nested) loops

- Suppose
 - A and B are loops with headers a and b
 - \(a \neq b \)
 - b is in A

- Then
 - The nodes of B are a proper subset of A
 - B is nested in A, or B is the *inner loop*
Loop-Nest Tree

- Given a flow graph G
 1. Compute the dominators of G
 2. Construct the dominator tree
 3. Find the natural loops (thus all loop-header nodes)
 4. For each loop header h, merge all natural loops of h into a single loop: $\text{loop}[h]$
 5. Construct a tree of loop headers s.t. h_1 is above h_2 if h_2 is in $\text{loop}[h_1]$