
11/15/2011 © 2002-11 Hal Perkins & UW CSE T-1

CSE P 501 – Compilers

Loops

Hal Perkins

Autumn 2011

Agenda

 Loop optimizations
 Dominators – discovering loops

 Loop invariant calculations

 Loop transformations

 A quick look at some memory hierarchy
issues

 Largely based on material in Appel ch. 18, 21; similar
material in other books

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-2

Loops

 Much of he execution time of programs
is spent here

  worth considerable effort to make
loops go faster

  want to figure out how to recognize
loops and figure out how to “improve”
them

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-3

What’s a Loop?

 In a control flow graph, a loop is a set
of nodes S such that:

 S includes a header node h

 From any node in S there is a path of
directed edges leading to h

 There is a path from h to any node in S

 There is no edge from any node outside S
to any node in S other than h

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-4

Entries and Exits

 In a loop

 An entry node is one with some
predecessor outside the loop

 An exit node is one that has a successor
outside the loop

 Corollary of preceding definitions: A
loop may have multiple exit nodes, but
only one entry node

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-5

Reducible Flow Graphs

 In a reducible flow graph, any two loops are
either nested or disjoint

 Roughly, to discover if a flow graph is
reducible, repeatedly delete edges and collapse
together pairs of nodes (x,y) where x is the
only predecessor of y

 If the graph can be reduced to a single node it
is reducible
 Caution: this is the “powerpoint” version of the

definition – see a good compiler book for the
careful details

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-6

Example: Is this Reducible?

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-7

Example: Is this Reducible?

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-8

Reducible Flow Graphs in
Practice

 Common control-flow constructs yield
reducible flow graphs
 if-then[-else], while, do, for, break(!)

 A C function without goto will always be
reducible

 Many dataflow analysis algorithms are
very efficient on reducible graphs, but…

 We don’t need to assume reducible
control-flow graphs to handle loops

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-9

Finding Loops in Flow Graphs

 We use dominators for this

 Recall

 Every control flow graph has a unique start
node s0

 Node x dominates node y if every path
from s0 to y must go through x

 A node x dominates itself

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-10

Calculating Dominator Sets

 D[n] is the set of nodes that dominate n

 D[s0] = { s0 }

 D[n] = { n }  (ppred[n] D[p])

 Set up an iterative analysis as usual to
solve this

 Except initially each D[n] must be all nodes
in the graph – updates make these sets
smaller if changed

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-11

Immediate Dominators

 Every node n has a single immediate
dominator idom(n)
 idom(n) differs from n
 idom(n) dominates n
 idom(n) does not dominate any other

dominator of n

 Fact (er, theorem): If a dominates n and b
dominates n, then either a dominates b or
b dominates a
  idom(n) is unique

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-12

Dominator Tree

 A dominator tree is constructed from a
flowgraph by drawing an edge form
every node in n to idom(n)

 This will be a tree. Why?

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-13

Example

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-14

Back Edges & Loops

 A flow graph edge from a node n to a
node h that dominates n is a back edge

 For every back edge there is a
corresponding subgraph of the flow
graph that is a loop

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-15

Natural Loops

 If h dominates n and n->h is a back edge,
then the natural loop of that back edge is
the set of nodes x such that

 h dominates x

 There is a path from x to n not containing h

 h is the header of this loop

 Standard loop optimizations can cope with
loops whether they are natural or not

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-16

Inner Loops

 Inner loops are more important for
optimization because most execution
time is expected to be spent there

 If two loops share a header, it is hard
to tell which one is “inner”

 Common way to handle this is to merge
natural loops with the same header

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-17

Inner (nested) loops

 Suppose

 A and B are loops with headers a and b

 a  b

 b is in A

 Then

 The nodes of B are a proper subset of A

 B is nested in A, or B is the inner loop

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-18

Loop-Nest Tree

 Given a flow graph G
1. Compute the dominators of G

2. Construct the dominator tree

3. Find the natural loops (thus all loop-
header nodes)

4. For each loop header h, merge all natural
loops of h into a single loop: loop[h]

5. Construct a tree of loop headers s.t. h1 is
above h2 if h2 is in loop[h1]

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-19

Loop-Nest Tree details

 Leaves of this tree are the innermost
loops

 Need to put all non-loop nodes
somewhere

 Convention: lump these into the root of the
loop-nest tree

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-20

Example

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-21

Loop Preheader

 Often we need a place to park code
right before the beginning of a loop

 Easy if there is a single node preceding
the loop header h

 But this isn’t the case in general

 So insert a preheader node p

 Include an edge p->h

 Change all edges x->h to be x->p

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-22

Loop-Invariant Computations

 Idea: If x := a1 op a2 always does the
same thing each time around the loop,
we’d like to hoist it and do it once
outside the loop

 But can’t always tell if a1 and a2 will
have the same value

 Need a conservative (safe) approximation

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-23

Loop-Invariant Computations

 d: x := a1 op a2 is loop-invariant if for each ai

 ai is a constant, or
 All the definitions of ai that reach d are outside the

loop, or
 Only one definition of ai reaches d, and that

definition is loop invariant

 Use this to build an iterative algorithm
 Base cases: constants and operands defined

outside the loop
 Then: repeatedly find definitions with loop-

invariant operands

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-24

Hoisting

 Assume that d: x := a1 op a2 is loop
invariant. We can hoist it to the loop
preheader if
 d dominates all loop exits where x is live-out,

and
 There is only one definition of x in the loop,

and
 x is not live-out of the loop preheader

 Need to modify this if a1 op a2 could have
side effects or raise an exception

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-25

Hoisting: Possible?

 Example 1

L0: t := 0

L1: i := i + 1

 t := a op b

 M[i] := t

 if i < n goto L1

L2: x := t

 Example 2

L0: t := 0

L1: if i ≥ n goto L2

 i := i + 1

 t := a op b

 M[i] := t

 goto L1

L2: x := t

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-26

Hoisting: Possible?

 Example 3

L0: t := 0

L1: i := i + 1

 t := a op b

 M[i] := t

 t := 0

 M[j] := t

 if i < n goto L1

L2: x := t

 Example 4

L0: t := 0

L1: M[j] := t

 i := i + 1

 t := a op b

 M[i] := t

 if i < n goto L1

L2: x := t

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-27

Induction Variables

 Suppose inside a loop

 Variable i is incremented or decremented

 Variable j is set to i*c+d where c and d are
loop-invariant

 Then we can calculate j’s value without
using i

 Whenever i is incremented by a,
increment j by c*a

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-28

Example

 Original
 s := 0
 i := 0
L1: if i ≥ n goto L2
 j := i*4
 k := j+a
 x := M[k]
 s := s+x
 i := i+1
 goto L1
L2:

 To optimize, do…
 Induction-variable

analysis to discover i
and j are related
induction variables

 Strength reduction to
replace *4 with an
addition

 Induction-variable
elimination to replace i
≥ n

 Assorted copy
propagation

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-29

Result

 Original
 s := 0
 i := 0
L1: if i ≥ n goto L2
 j := i*4
 k := j+a
 x := M[k]
 s := s+x
 i := i+1
 goto L1
L2:

 Transformed
 s := 0
 k’ = a
 b = n*4
 c = a+b
L1: if k’ ≥ c goto L2
 x := M[k’]
 s := s+x
 k’ := k’+4
 goto L1
L2:

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-30

Details are somewhat messy – see your favorite compiler book

Basic and Derived
Induction Variables

 Variable i is a basic induction variable in loop L
with header h if the only definitions of i in L
have the form i:=ic where c is loop invariant

 Variable k is a derived induction variable in L if:
 There is only one definition of k in L of the form

k:=j*c or k:=j+d where j is an induction variable
and c, d are loop-invariant, and

 if j is a derived variable in the family of i, then:
 The only definition of j that reaches k is the one in the

loop, and
 there is no definition of i on any path between the

definition of j and the definition of k

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-31

Optimizating Induction
Variables

 Strength reduction: if a derived induction
variable is defined with j:=i*c, try to replace it
with an addition inside the loop

 Elimination: after strength reduction some
induction variables are not used or are only
compared to loop-invariant variables; delete
them

 Rewrite comparisons: If a variable is used only
in comparisons against loop-invariant variables
and in its own definition, modify the
comparison to use a related induction variable

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-32

Loop Unrolling

 If the body of a loop is small, most of
the time is spent in the “increment and
test” code

 Idea: reduce overhead by unrolling –
put two or more copies of the loop body
inside the loop

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-33

Loop Unrolling

 Basic idea: Given loop L with header
node h and back edges si->h

1. Copy the nodes to make loop L’ with
header h’ and back edges si’->h’

2. Change all backedges in L from si->h to
si->h’

3. Change all back edges in L’ from si’->h’ to
si’->h

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-34

Unrolling Algorithm Results

 Before

L1: x := M[i]

 s := s + x

 i := i + 4

 if i<n goto L1 else L2

L2:

 After

L1: x := M[i]

 s := s + x

 i := i + 4

 if i<n goto L1’ else L2

L1’: x := M[i]

 s := s + x

 i := i + 4

 if i<n goto L1 else L2

L2:

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-35

Hmmmm….

 Not so great – just code bloat

 But: use induction variables and various
loop transformations to clean up

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-36

After Some Optimizations

 Before

L1: x := M[i]

 s := s + x

 i := i + 4

 if i<n goto L1’ else L2

L1’: x := M[i]

 s := s + x

 i := i + 4

 if i<n goto L1 else L2

L2:

 After

L1: x := M[i]

 s := s + x

 x := M[i+4]

 s := s + x

 i := i + 8

 if i<n goto L1 else L2

L2:

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-37

Still Broken…

 But in a different, better(?) way

 Good code, but only correct if original
number of loop iterations was even

 Fix: add an epilogue to handle the
“odd” leftover iteration

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-38

Fixed

 Before

L1: x := M[i]

 s := s + x

 x := M[i+4]

 s := s + x

 i := i + 8

 if i<n goto L1 else L2

L2:

 After
 if i<n-8 goto L1 else L2
L1: x := M[i]
 s := s + x
 x := M[i+4]
 s := s + x
 i := i + 8
 if i<n-8 goto L1 else L2
L2: x := M[i]
 s := s+x
 i := i+4
 if i < n goto L2 else L3
L3:

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-39

Postscript

 This example only unrolls the loop by a
factor of 2

 More typically, unroll by a factor of K

 Then need an epilogue that is a loop like
the original that iterates up to K-1 times

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-40

Memory Heirarchies

 One of the great triumphs of computer
design

 Effect is a large, fast memory

 Reality is a series of progressively larger,
slower, cheaper stores, with frequently
accessed data automatically staged to
faster storage (cache, main storage, disk)

 Programmer/compiler typically treats it as
one large store. Bug or feature?

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-41

Memory Issues (review)

 Byte load/store is often slower than whole
(physical) word load/store
 Unaligned access is often extremely slow

 Temporal locality: accesses to recently
accessed data will usually find it in the (fast)
cache

 Spatial locality: accesses to data near recently
used data will usually be fast
 “near” = in the same cache block

 But – alternating accesses to blocks that map
to the same cache block will cause thrashing

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-42

Data Alignment

 Data objects (structs) often are similar in
size to a cache block (≈ 8 words)
  Better if objects don’t span blocks

 Some strategies
 Allocate objects sequentially; bump to next

block boundary if useful

 Allocate objects of same common size in
separate pools (all size-2, size-4, etc.)

 Tradeoff: speed for some wasted space

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-43

Instruction Alignment

 Align frequently executed basic blocks on cache
boundaries (or avoid spanning cache blocks)

 Branch targets (particularly loops) may be
faster if they start on a cache line boundary

 Try to move infrequent code (startup,
exceptions) away from hot code

 Optimizing compiler should have a basic-block
ordering phase (& maybe even loader)

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-44

Loop Interchange

 Watch for bad cache patterns in inner
loops; rearrange if possible

 Example
 for (i = 0; i < m; i++)
 for (j = 0; j < n; j++)
 for (k = 0; k < p; k++)
 a[i,k,j] = b[i,j-1,k] + b[i,j,k] + b[i,j+1,k]
 b[i,j+1,k] is reused in the next two iterations,

but will have been flushed from the cache by
the k loop

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-45

Loop Interchange

 Solution for this example: interchange j
and k loops
 for (i = 0; i < m; i++)
 for (k = 0; k < p; k++)
 for (j = 0; j < n; j++)
 a[i,k,j] = b[i,j-1,k] + b[i,j,k] + b[i,j+1,k]
 Now b[i,j+1,k] will be used three times on

each cache load
 Safe here because loop iterations are

independent

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-46

Loop Interchange

 Need to construct a data-dependency
graph showing information flow between
loop iterations

 For example, iteration (j,k) depends on
iteration (j’,k’) if (j’,k’) computes values
used in (j,k) or stores values overwritten
by (j,k)
 If there is a dependency and loops are

interchanged, we could get different results –
so can’t do it

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-47

Blocking

 Consider matrix multiply
for (i = 0; i < n; i++)
 for (j = 0; j < n; j++) {
 c[i,j] = 0.0;
 for (k = 0; k < n; k++)
 c[i,j] = c[i,j] + a[i,k]*b[k,j]
 }

 If a, b fit in the cache together, great!
 If they don’t, then every b[k,j] reference will be a cache

miss
 Loop interchange (i<->j) won’t help; then every a[i,k]

reference would be a miss

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-48

Blocking

 Solution: reuse rows of A and columns
of B while they are still in the cache

 Assume the cache can hold 2*c*n
matrix elements (1 < c < n)

 Calculate c  c blocks of C using c rows
of A and c columns of B

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-49

Blocking

 Calculating c  c blocks of C

for (i = i0; i < i0+c; i++)

 for (j = j0; j < j0+c; j++) {

 c[i,j] = 0.0;

 for (k = 0; k < n; k++)

 c[i,j] = c[i,j] + a[i,k]*b[k,j]

 }

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-50

Blocking

 Then nest this inside loops that calculate
successive c  c blocks
for (i0 = 0; i0 < n; i0+=c)
 for (j0 = 0; j0 < n; j0+=c)
 for (i = i0; i < i0+c; i++)
 for (j = j0; j < j0+c; j++) {
 c[i,j] = 0.0;
 for (k = 0; k < n; k++)
 c[i,j] = c[i,j] + a[i,k]*b[k,j]
 }

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-51

Parallelizing Code

 There is a long literature about how to
rearrange loops for better locality and to
detect parallelism

 Some starting points
 Latest edition of Dragon book, ch. 11

 Allen & Kennedy Optimizing Compilers for
Modern Architectures

 Wolfe, High-Performance Compilers for
Parallel Computing

11/15/2011 © 2002-11 Hal Perkins & UW CSE T-52

