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CSE P 501 – Compilers 

Loops 
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Agenda 

 Loop optimizations 
 Dominators – discovering loops 

 Loop invariant calculations 

 Loop transformations 

 A quick look at some memory hierarchy 
issues 
 

 Largely based on material in Appel ch. 18, 21; similar 
material in other books 
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Loops 

 Much of he execution time of programs 
is spent here 

  worth considerable effort to make 
loops go faster 

  want to figure out how to recognize 
loops and figure out how to “improve” 
them 
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What’s a Loop? 

 In a control flow graph, a loop is a set 
of nodes S such that: 

 S includes a header node h 

 From any node in S there is a path of 
directed edges leading to h 

 There is a path from h to any node in S 

 There is no edge from any node outside S 
to any node in S other than h 
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Entries and Exits 

 In a loop 

 An entry node is one with some 
predecessor outside the loop 

 An exit node is one that has a successor 
outside the loop 

 Corollary of preceding definitions: A 
loop may have multiple exit nodes, but 
only one entry node 
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Reducible Flow Graphs 

 In a reducible flow graph, any two loops are 
either nested or disjoint 

 Roughly, to discover if a flow graph is 
reducible, repeatedly delete edges and collapse 
together pairs of nodes (x,y) where x is the 
only predecessor of y 

 If the graph can be reduced to a single node it 
is reducible 
 Caution: this is the “powerpoint” version of the 

definition – see a good compiler book for the 
careful details 
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Example: Is this Reducible? 
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Example: Is this Reducible? 
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Reducible Flow Graphs in 
Practice 

 Common control-flow constructs yield 
reducible flow graphs 
 if-then[-else], while, do, for, break(!) 

 A C function without goto will always be 
reducible 

 Many dataflow analysis algorithms are 
very efficient on reducible graphs, but… 

 We don’t need to assume reducible 
control-flow graphs to handle loops 
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Finding Loops in Flow Graphs 

 We use dominators for this 

 Recall 

 Every control flow graph has a unique start 
node s0 

 Node x dominates node y if every path 
from s0 to y must go through x 

 A node x dominates itself 
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Calculating Dominator Sets 

 D[n] is the set of nodes that dominate n 

 D[s0] = { s0 } 

 D[n] = { n }  ( ppred[n] D[p] ) 

 Set up an iterative analysis as usual to 
solve this 

 Except initially each D[n] must be all nodes 
in the graph – updates make these sets 
smaller if changed 
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Immediate Dominators 

 Every node n has a single immediate 
dominator  idom(n) 
 idom(n) differs from n 
 idom(n) dominates n 
 idom(n) does not dominate any other 

dominator of n 

 Fact (er, theorem): If a dominates n and b 
dominates n, then either a dominates b or 
b dominates a 
  idom(n) is unique 
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Dominator Tree 

 A dominator tree  is constructed from a 
flowgraph by drawing an edge form 
every node in n to idom(n) 

 This will be a tree.  Why? 
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Example 
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Back Edges & Loops 

 A flow graph edge from a node n to a 
node h that dominates n is a back edge  

 For every back edge there is a 
corresponding subgraph of the flow 
graph that is a loop 
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Natural Loops 

 If h dominates n and n->h is a back edge, 
then the natural loop of that back edge is 
the set of nodes x such that 

 h dominates x 

 There is a path from x to n not containing h 

 h is the header  of this loop 

 Standard loop optimizations can cope with 
loops whether they are natural or not 
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Inner Loops 

 Inner loops are more important for 
optimization because most execution 
time is expected to be spent there 

 If two loops share a header, it is hard 
to tell which one is “inner” 

 Common way to handle this is to merge 
natural loops with the same header 
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Inner (nested) loops 

 Suppose 

 A and B are loops with headers a and b 

 a  b 

 b is in A 

 Then 

 The nodes of B are a proper subset of A 

 B is nested in A, or B is the inner loop  
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Loop-Nest Tree 

 Given a flow graph G 
1. Compute the dominators of G 

2. Construct the dominator tree 

3. Find the natural loops (thus all loop-
header nodes) 

4. For each loop header h, merge all natural 
loops of h into a single loop: loop[h] 

5. Construct a tree of loop headers s.t. h1 is 
above h2 if h2 is in loop[h1] 
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Loop-Nest Tree details 

 Leaves of this tree are the innermost 
loops 

 Need to put all non-loop nodes 
somewhere 

 Convention: lump these into the root of the 
loop-nest tree 
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Example 
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Loop Preheader 

 Often we need a place to park code 
right before the beginning of a loop 

 Easy if there is a single node preceding 
the loop header h 

 But this isn’t the case in general 

 So insert a preheader node p 

 Include an edge p->h 

 Change all edges x->h to be x->p 
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Loop-Invariant Computations 

 Idea: If x := a1 op a2 always does the 
same thing each time around the loop, 
we’d like to hoist  it and do it once 
outside the loop 

 But can’t always tell if a1 and a2 will 
have the same value 

 Need a conservative (safe) approximation 
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Loop-Invariant Computations 

 d: x := a1 op a2 is loop-invariant if for each ai 

 ai is a constant, or 
 All the definitions of ai that reach d are outside the 

loop, or 
 Only one definition of ai reaches d, and that 

definition is loop invariant 

 Use this to build an iterative algorithm 
 Base cases: constants and operands defined 

outside the loop 
 Then: repeatedly find definitions with loop-

invariant operands 
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Hoisting 

 Assume that  d: x := a1 op a2  is loop 
invariant.  We can hoist it to the loop 
preheader if 
 d dominates all loop exits where x is live-out, 

and 
 There is only one definition of x in the loop, 

and 
 x is not live-out of the loop preheader 

 Need to modify this if a1 op a2 could have 
side effects or raise an exception 
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Hoisting: Possible? 

 Example 1 

L0: t := 0 

L1: i := i + 1 

  t := a op b 

  M[i] := t 

  if i < n goto L1 

L2: x := t 

 Example 2 

L0: t := 0 

L1: if i ≥ n goto L2  

  i := i + 1 

  t := a op b 

  M[i] := t 

  goto L1 

L2: x := t 
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Hoisting: Possible? 

 Example 3 

L0: t := 0 

L1: i := i + 1 

  t := a op b 

  M[i] := t 

  t := 0 

  M[j] := t 

  if i < n goto L1 

L2: x := t 

 

 Example 4 

L0: t := 0 

L1: M[j] := t 

  i := i + 1 

  t := a op b 

  M[i] := t 

   if i < n goto L1 

L2: x := t 
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Induction Variables 

 Suppose inside a loop 

 Variable i is incremented or decremented 

 Variable j is set to i*c+d where c and d are 
loop-invariant 

 Then we can calculate j’s value without 
using i  

 Whenever i is incremented by a,  
increment j by c*a 
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Example 

 Original 
  s := 0 
  i := 0 
L1: if i ≥ n goto L2 
  j := i*4 
  k := j+a 
  x := M[k] 
  s := s+x 
  i := i+1 
  goto L1 
L2: 

 To optimize, do… 
 Induction-variable 

analysis to discover i 
and j are related 
induction variables 

 Strength reduction to 
replace *4 with an 
addition 

 Induction-variable 
elimination to replace i 
≥ n 

 Assorted copy 
propagation 
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Result 

 Original 
  s := 0 
  i := 0 
L1: if i ≥ n goto L2 
  j := i*4 
  k := j+a 
  x := M[k] 
  s := s+x 
  i := i+1 
  goto L1 
L2: 

 

 Transformed 
  s := 0 
  k’ = a 
  b = n*4 
  c = a+b 
L1: if k’ ≥ c goto L2 
  x := M[k’] 
  s := s+x 
  k’ := k’+4 
  goto L1 
L2: 
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Basic and Derived 
Induction Variables 

 Variable i is a basic induction variable in loop L 
with header h if the only definitions of i in L 
have the form i:=ic where c is loop invariant 

 Variable k is a derived induction variable in L if: 
 There is only one definition of k in L of the form 

k:=j*c or k:=j+d where j is an induction variable 
and c, d are loop-invariant, and 

 if j is a derived variable in the family of i, then: 
 The only definition of j that reaches k is the one in the 

loop, and 
 there is no definition of i on any path between the 

definition of j and the definition of k 
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Optimizating Induction 
Variables 

 Strength reduction: if a derived induction 
variable is defined with j:=i*c, try to replace it 
with an addition inside the loop 

 Elimination: after strength reduction some 
induction variables are not used or are only 
compared to loop-invariant variables; delete 
them 

 Rewrite comparisons:  If a variable is used only 
in comparisons against loop-invariant variables 
and in its own definition, modify the 
comparison to use a related induction variable 
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Loop Unrolling 

 If the body of a loop is small, most of 
the time is spent in the “increment and 
test” code 

 Idea: reduce overhead by unrolling – 
put two or more copies of the loop body 
inside the loop 
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Loop Unrolling 

 Basic idea: Given loop L with header 
node h and back edges si->h 

1. Copy the nodes to make loop L’ with 
header h’ and back edges si’->h’ 

2. Change all backedges in L from si->h to 
si->h’ 

3. Change all back edges in L’ from si’->h’ to 
si’->h 
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Unrolling Algorithm Results 

 Before 

L1: x := M[i] 

  s := s + x 

  i := i + 4 

 if i<n goto L1 else L2 

L2: 

 After 

L1: x := M[i] 

  s := s + x 

  i := i + 4 

  if i<n goto L1’ else L2 

L1’: x := M[i] 

  s := s + x 

  i := i + 4 

 if i<n goto L1 else L2 

L2: 
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Hmmmm…. 

 Not so great – just code bloat 

 But: use induction variables and various 
loop transformations to clean up 
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After Some Optimizations 

 Before 

L1: x := M[i] 

  s := s + x 

  i := i + 4 

  if i<n goto L1’ else L2 

L1’: x := M[i] 

  s := s + x 

  i := i + 4 

 if i<n goto L1 else L2 

L2: 

 

 After 

L1: x := M[i] 

  s := s + x 

  x := M[i+4] 

  s := s + x 

  i := i + 8 

  if i<n goto L1 else L2 

L2: 
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Still Broken… 

 But in a different, better(?) way 

 Good code, but only correct if original 
number of loop iterations was even 

 Fix: add an epilogue to handle the 
“odd” leftover iteration 
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Fixed 

 Before 

L1: x := M[i] 

  s := s + x 

  x := M[i+4] 

  s := s + x 

  i := i + 8 

 if i<n goto L1 else L2 

L2: 

 After 
  if i<n-8 goto L1 else L2 
L1: x := M[i] 
  s := s + x 
  x := M[i+4] 
  s := s + x 
  i := i + 8 
  if i<n-8 goto L1 else L2 
L2: x := M[i] 
  s := s+x 
  i := i+4 
  if i < n goto L2 else L3 
L3: 
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Postscript 

 This example only unrolls the loop by a 
factor of 2 

 More typically, unroll by a factor of K 

 Then need an epilogue that is a loop like 
the original that iterates up to K-1 times 
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Memory Heirarchies 

 One of the great triumphs of computer 
design 

 Effect is a large, fast memory 

 Reality is a series of progressively larger, 
slower, cheaper stores, with frequently 
accessed data automatically staged to 
faster storage (cache, main storage, disk) 

 Programmer/compiler typically treats it as 
one large store.  Bug or feature?  
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Memory Issues (review) 

 Byte load/store is often slower than whole 
(physical) word load/store 
 Unaligned access is often extremely slow 

 Temporal locality: accesses to recently 
accessed data will usually find it in the (fast) 
cache 

 Spatial locality: accesses to data near recently 
used data will usually be fast 
 “near” = in the same cache block 

 But – alternating accesses to blocks that map 
to the same cache block will cause thrashing 
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Data Alignment 

 Data objects (structs) often are similar in 
size to a cache block (≈ 8 words) 
  Better if objects don’t span blocks 

 Some strategies 
 Allocate objects sequentially; bump to next 

block boundary if useful 

 Allocate objects of same common size in 
separate pools (all size-2, size-4, etc.) 

 Tradeoff: speed for some wasted space 
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Instruction Alignment 

 Align frequently executed basic blocks on cache 
boundaries (or avoid spanning cache blocks) 

 Branch targets (particularly loops) may be 
faster if they start on a cache line boundary 

 Try to move infrequent code (startup, 
exceptions) away from hot code 

 Optimizing compiler should have a basic-block 
ordering phase (& maybe even loader) 
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Loop Interchange 

 Watch for bad cache patterns in inner 
loops; rearrange if possible 

 Example 
 for (i = 0; i < m; i++) 
   for (j = 0; j < n; j++) 
     for (k = 0; k < p; k++) 
       a[i,k,j] = b[i,j-1,k] + b[i,j,k] + b[i,j+1,k] 
 b[i,j+1,k] is reused in the next two iterations, 

but will have been flushed from the cache by 
the k loop 
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Loop Interchange 

 Solution for this example: interchange j 
and k loops 
 for (i = 0; i < m; i++) 
   for (k = 0; k < p; k++) 
     for (j = 0; j < n; j++) 
       a[i,k,j] = b[i,j-1,k] + b[i,j,k] + b[i,j+1,k] 
 Now b[i,j+1,k] will be used three times on 

each cache load 
 Safe  here because loop iterations are 

independent 
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Loop Interchange 

 Need to construct a data-dependency 
graph showing information flow between 
loop iterations 

 For example, iteration (j,k) depends on 
iteration (j’,k’) if (j’,k’) computes values 
used in (j,k) or stores values overwritten 
by (j,k) 
 If there is a dependency and loops are 

interchanged, we could get different results – 
so can’t do it 
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Blocking 

 Consider matrix multiply 
for (i = 0; i < n; i++) 
  for (j = 0; j < n; j++) { 
    c[i,j] = 0.0; 
    for (k = 0; k < n; k++) 
      c[i,j] = c[i,j] + a[i,k]*b[k,j] 
  } 

 If a, b fit in the cache together, great! 
 If they don’t, then every b[k,j] reference will be a cache 

miss 
 Loop interchange (i<->j) won’t help; then every a[i,k] 

reference would be a miss 
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Blocking 

 Solution: reuse rows of A and columns 
of B while they are still in the cache 

 Assume the cache can hold 2*c*n 
matrix elements (1 < c < n) 

 Calculate c  c blocks of C using c rows 
of A and c columns of B 
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Blocking 

 Calculating c  c blocks of C 

for (i = i0; i < i0+c; i++) 

  for (j = j0; j < j0+c; j++) { 

    c[i,j] = 0.0; 

    for (k = 0; k < n; k++) 

      c[i,j] = c[i,j] + a[i,k]*b[k,j] 

  } 
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Blocking 

 Then nest this inside loops that calculate 
successive c  c blocks 
for (i0 = 0; i0 < n; i0+=c) 
  for (j0 = 0; j0 < n; j0+=c) 
    for (i = i0; i < i0+c; i++) 
      for (j = j0; j < j0+c; j++) { 
        c[i,j] = 0.0; 
        for (k = 0; k < n; k++) 
          c[i,j] = c[i,j] + a[i,k]*b[k,j] 
      } 
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Parallelizing Code 

 There is a long literature about how to 
rearrange loops for better locality and to 
detect parallelism 

 Some starting points 
 Latest edition of Dragon book, ch. 11 

 Allen & Kennedy Optimizing Compilers for 
Modern Architectures  

 Wolfe, High-Performance Compilers for 
Parallel Computing 
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