CSE P 501 – Compilers

Optimizing Transformations
Hal Perkins
Autumn 2011
Agenda

- A sampler of typical optimizing transformations
 - Mostly a teaser for later, particularly once we’ve looked at analyzing loops
Role of Transformations

- Data-flow analysis discovers opportunities for code improvement
- Compiler must rewrite the code (IR) to realize these improvements
 - A transformation may reveal additional opportunities for further analysis & transformation
 - May also block opportunities by obscuring information
Organizing Transformations in a Compiler

- Typically middle end consists of many individual transformations that filter the IR and produce rewritten IR
- No formal theory for order to apply them
 - Some rules of thumb and best practices
 - Some transformations can be profitably applied repeatedly, particularly if others transformations expose more opportunities
A Taxonomy

- **Machine Independent Transformations**
 - Realized profitability may actually depend on machine architecture, but are typically implemented without considering this

- **Machine Dependent Transformations**
 - Most of the machine dependent code is in instruction selection & scheduling and register allocation
 - Some machine dependent code belongs in the optimizer
Machine Independent Transformations

- Dead code elimination
- Code motion
- Specialization
- Strength reduction
- Enable other transformations
- Eliminate redundant computations
 - Value numbering, GCSE
Machine Dependent Transformations

- Take advantage of special hardware
 - Expose instruction-level parallelism, for example
- Manage or hide latencies
 - Improve cache behavior
- Deal with finite resources
Dead Code Elimination

- If a compiler can prove that a computation has no external effect, it can be removed
 - Useless operations
 - Unreachable operations
- Dead code often results from other transformations
 - Often want to do DCE several times
Dead Code Elimination

- Classic algorithm is similar to garbage collection
 - Pass I – Mark all useful operations
 - Start with critical operations – output, entry/exit blocks, calls to other procedures, etc.
 - Mark all operations that are needed for critical operations; repeat until convergence
 - Pass II – delete all unmarked operations
 - Need to treat jumps carefully
Code Motion

- Idea: move an operation to a location where it is executed less frequently
 - Classic situation: move loop-invariant code out of a loop and execute it once, not once per iteration
- Lazy code motion: code motion plus elimination of redundant and partially redundant computations
Specialization

- Idea: Analysis phase may reveal information that allows a general operation in the IR to be replaced by a more specific one
 - Constant folding
 - Replacing multiplications and division by constants with shifts
 - Peephole optimizations
 - Tail recursion elimination
Strength Reduction

- Classic example: Array references in a loop

  ```c
  for (k = 0; k < n; k++) a[k] = 0;
  ```

- Simple code generation would usually produce address arithmetic including a multiplication \((k \times \text{elementsize})\) and addition

- Optimization can produce \(*p++ = 0;\)
Implementing Strength Reduction

- Idea: look for operations in a loop involving:
 - A value that does not change in the loop, the *region constant*, and
 - A value that varies systematically from iteration to iteration, the *induction variable*

- Create a new induction variable that directly computes the sequence of values produced by the original one; use an addition in each iteration to update the value
Some Enabling Transformations

- Inline substitution (procedure bodies)
- Block cloning
- Loop Unrolling
- Loop Unswitching
Inline Substitution

- Idea: Replace method calls with a copy of the method body. Instead of
 \[x = \text{foo}.getY(); \]
 use
 \[x = \text{foo}.y \]
 - Eliminates call overhead
 - Opens possibilities for other optimizations
- But: Possible code bloat, need to catch changes to inlined code
- Still, huge win for much object-oriented code
Code Replication

- Idea: duplicate code to increase chances for optimizations, better code generation
- Tradeoff: larger code size, potential interactions with caches, registers
Code Replication Example

- **Original**

```plaintext
if (x < y) {
    p = x+y;
} else {
    p = z + 1;
}
q = p*3;
w = p + q;
```

- **Duplicating code; larger basic blocks to optimize**

```plaintext
if (x < y) {
    p = x+y;
    q = p*3;
    w = p + q;
} else {
    p = z + 1;
    q = p*3;
    w = p + q;
}
```
Loop Unrolling

- Idea: Replicate the loop body to expose inter-iteration optimization possibilities
 - Increases chances for good schedules and instruction level parallelism
 - Reduces loop overhead
- Catch – need to handle dependencies between iterations carefully
Loop Unrolling Example

- Original

 for (i=1, i<=n, i++)
 a[i] = b[i];

- Unrolled by 4

 i=1;
 while (i+3 <= n) {
 a[i] = a[i]+b[i];
 a[i+1] = a[i+1]+b[i+1];
 a[i+2] = a[i+2]+b[i+2];
 a[i+3] = a[i+3]+b[i+3];
 a+=4;
 }
 while (i <= n) {
 a[i] = a[i]+b[i];
 i++;
Loop Unswitching

- Idea: if the condition in an if-then-else is loop invariant, rewrite the loop by pulling the if-then-else out of the loop and generating a tailored copy of the loop for each half of the new if.

- After this transformation, both loops have simpler control flow – more chances for rest of compiler to do better.
Loop Unswitching Example

- Original
 for (i=1, i<=n, i++)
 if (x > y)
 a[i] = b[i]*x;
 else
 a[i] = b[i]*y

- Unswitched
 if (x > y)
 for (i = 1; i < n; i++)
 a[i] = b[i]*x;
 else
 a[i] = b[i]*y;
Summary

- This is just a sampler
 - Hundreds of transformations in the literature
 - We will look at several in more detail, particularly involving loops
- Big part of engineering a compiler is to decide which transformations to use, in what order, and when to repeat them
 - Different tradeoffs depending on compiler goals