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Agenda 

 A sampler of typical optimizing 
transformations 

 Mostly a teaser for later, particularly once 
we’ve looked at analyzing loops 
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Role of Transformations 

 Data-flow analysis discovers 
opportunities for code improvement 

 Compiler must rewrite the code (IR) to 
realize these improvements 
 A transformation may reveal additional 

opportunities for further analysis & 
transformation 

 May also block opportunities by obscuring 
information 
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Organizing Transformations in 
a Compiler 

 Typically middle end consists of many 
individual transformations that filter the 
IR and produce rewritten IR 

 No formal theory for order to apply 
them 
 Some rules of thumb and best practices 

 Some transformations can be profitably 
applied repeatedly, particularly if others 
transformations expose more opportunities 
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A Taxonomy 

 Machine Independent Transformations 
 Realized profitability may actually depend on 

machine architecture, but are typically 
implemented without considering this 

 Machine Dependent Transformations 
 Most of the machine dependent code is in 

instruction selection & scheduling and register 
allocation 

 Some machine dependent code belongs in the 
optimizer 
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Machine Independent 
Transformations 

 Dead code elimination 

 Code motion 

 Specialization 

 Strength reduction 

 Enable other transformations 

 Eliminate redundant computations 

 Value numbering, GCSE 
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Machine Dependent 
Transformations 

 Take advantage of special hardware 

 Expose instruction-level parallelism, for 
example 

 Manage or hide latencies 

 Improve cache behavior 

 Deal with finite resources 
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Dead Code Elimination  

 If a compiler can prove that a 
computation has no external effect, it 
can be removed 
 Useless operations 

 Unreachable operations 

 Dead code often results from other 
transformations 
 Often want to do DCE several times 
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Dead Code Elimination 

 Classic algorithm is similar to garbage 
collection 
 Pass I – Mark all useful operations 

 Start with critical operations – output, 
entry/exit blocks, calls to other procedures, etc. 

 Mark all operations that are needed for critical 
operations; repeat until convergence 

 Pass II – delete all unmarked operations 

 Need to treat jumps carefully  
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Code Motion 

 Idea: move an operation to a location 
where it is executed less frequently 

 Classic situation: move loop-invariant code 
out of a loop and execute it once, not once 
per iteration 

 Lazy code motion: code motion plus 
elimination of redundant and partially 
redundant computations 
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Specialization 

 Idea: Analysis phase may reveal 
information that allows a general 
operation in the IR to be replaced by a 
more specific one 
 Constant folding 

 Replacing multiplications and division by 
constants with shifts 

 Peephole optimizations 

 Tail recursion elimination 
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Strength Reduction 

 Classic example: Array references in a 
loop 

 for (k = 0; k < n; k++) a[k] = 0; 

 Simple code generation would usually 
produce address arithmetic including a 
multiplication (k*elementsize) and 
addition 

 Optimization can produce  *p++ = 0; 
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Implementing Strength 
Reduction 

 Idea: look for operations in a loop involving: 

 A value that does not change in the loop, the 
region constant, and  

 A value that varies systematically from iteration to 
iteration, the induction variable 

 Create a new induction variable that directly 
computes the sequence of values produced 
by the original one; use an addition in each 
iteration to update the value 
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Some Enabling 
Transformations 

 Inline substitution (procedure bodies) 

 Block cloning 

 Loop Unrolling 

 Loop Unswitching 

 



Inline Substitution 

 Idea: Replace method calls with a copy of the 
method body.  Instead of 
 x = foo.getY(); 

use 

 x = foo.y 

 Eliminates call overhead 

 Opens possibilities for other optimizations 

 But: Possible code bloat, need to catch changes 
to inlined code 

 Still, huge win for much object-oriented code 
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Code Replication 

 Idea: duplicate code to increase 
chances for optimizations, better code 
generation 

 Tradeoff: larger code size, potential 
interactions with caches, registers 
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Code Replication Example 

 Original 
 
if (x < y) { 
   p = x+y; 
} else { 
   p = z + 1; 
} 
q = p*3; 
w = p + q; 

 Duplicating code; larger 
basic blocks to optimize 
 
if (x < y) { 
   p = x+y; 
   q = p*3; 
   w = p + q; 
} else { 
   p = z + 1; 
   q = p*3; 
   w = p + q; 
} 
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Loop Unrolling 

 Idea: Replicate the loop body to expose 
inter-iteration optimization possibilities 

 Increases chances for good schedules and 
instruction level parallelism 

 Reduces loop overhead 

 Catch – need to handle dependencies 
between iterations carefully 
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Loop Unrolling Example 

 Original 
for (i=1, i<=n, i++) 
 a[i] = b[i]; 

 Unrolled by 4 
i=1; 
while (i+3 <= n) { 

a[i    ] = a[i    ]+b[i    ]; 
a[i+1] = a[i+1]+b[i+1]; 
a[i+2] = a[i+2]+b[i+2]; 
a[i+3] = a[i+3]+b[i+3]; 

 a+=4; 
} 
while (i <= n) { 
 a[i] = a[i]+b[i]; 
 i++; 
} 
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Loop Unswitching 

 Idea: if the condition in an if-then-else 
is loop invariant, rewrite the loop by 
pulling the if-then-else out of the loop 
and generating a tailored copy of the 
loop for each half of the new if 

 After this transformation, both loops have 
simpler control flow – more chances for 
rest of compiler to do better 
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Loop UnswitchingExample 

 Original 
for (i=1, i<=n, i++) 
 if (x > y) 
      a[i] = b[i]*x; 
    else 
      a[i] = b[i]*y 

 Unswitched 
if (x > y) 
  for (i = 1; i < n; i++) 
     a[i] = b[i]*x; 
  else 
     a[i] = b[i]*y; 
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Summary 

 This is just a sampler 

 Hundreds of transformations in the literature 

 We will look at several in more detail, particularly 
involving loops 

 Big part of engineering a compiler is to decide 
which transformations to use, in what order, 
and when to repeat them 

 Different tradeoffs depending on compiler goals 


