
11/8/2011 © 2002-11 Hal Perkins & UW CSE S-1

CSE P 501 – Compilers

Optimizing Transformations

Hal Perkins

Autumn 2011

11/8/2011 © 2002-11 Hal Perkins & UW CSE S-2

Agenda

 A sampler of typical optimizing
transformations

 Mostly a teaser for later, particularly once
we’ve looked at analyzing loops

11/8/2011 © 2002-11 Hal Perkins & UW CSE S-3

Role of Transformations

 Data-flow analysis discovers
opportunities for code improvement

 Compiler must rewrite the code (IR) to
realize these improvements
 A transformation may reveal additional

opportunities for further analysis &
transformation

 May also block opportunities by obscuring
information

11/8/2011 © 2002-11 Hal Perkins & UW CSE S-4

Organizing Transformations in
a Compiler

 Typically middle end consists of many
individual transformations that filter the
IR and produce rewritten IR

 No formal theory for order to apply
them
 Some rules of thumb and best practices

 Some transformations can be profitably
applied repeatedly, particularly if others
transformations expose more opportunities

11/8/2011 © 2002-11 Hal Perkins & UW CSE S-5

A Taxonomy

 Machine Independent Transformations
 Realized profitability may actually depend on

machine architecture, but are typically
implemented without considering this

 Machine Dependent Transformations
 Most of the machine dependent code is in

instruction selection & scheduling and register
allocation

 Some machine dependent code belongs in the
optimizer

11/8/2011 © 2002-11 Hal Perkins & UW CSE S-6

Machine Independent
Transformations

 Dead code elimination

 Code motion

 Specialization

 Strength reduction

 Enable other transformations

 Eliminate redundant computations

 Value numbering, GCSE

11/8/2011 © 2002-11 Hal Perkins & UW CSE S-7

Machine Dependent
Transformations

 Take advantage of special hardware

 Expose instruction-level parallelism, for
example

 Manage or hide latencies

 Improve cache behavior

 Deal with finite resources

11/8/2011 © 2002-11 Hal Perkins & UW CSE S-8

Dead Code Elimination

 If a compiler can prove that a
computation has no external effect, it
can be removed
 Useless operations

 Unreachable operations

 Dead code often results from other
transformations
 Often want to do DCE several times

11/8/2011 © 2002-11 Hal Perkins & UW CSE S-9

Dead Code Elimination

 Classic algorithm is similar to garbage
collection
 Pass I – Mark all useful operations

 Start with critical operations – output,
entry/exit blocks, calls to other procedures, etc.

 Mark all operations that are needed for critical
operations; repeat until convergence

 Pass II – delete all unmarked operations

 Need to treat jumps carefully

11/8/2011 © 2002-11 Hal Perkins & UW CSE S-10

Code Motion

 Idea: move an operation to a location
where it is executed less frequently

 Classic situation: move loop-invariant code
out of a loop and execute it once, not once
per iteration

 Lazy code motion: code motion plus
elimination of redundant and partially
redundant computations

11/8/2011 © 2002-11 Hal Perkins & UW CSE S-11

Specialization

 Idea: Analysis phase may reveal
information that allows a general
operation in the IR to be replaced by a
more specific one
 Constant folding

 Replacing multiplications and division by
constants with shifts

 Peephole optimizations

 Tail recursion elimination

11/8/2011 © 2002-11 Hal Perkins & UW CSE S-12

Strength Reduction

 Classic example: Array references in a
loop

 for (k = 0; k < n; k++) a[k] = 0;

 Simple code generation would usually
produce address arithmetic including a
multiplication (k*elementsize) and
addition

 Optimization can produce *p++ = 0;

11/8/2011 © 2002-11 Hal Perkins & UW CSE S-13

Implementing Strength
Reduction

 Idea: look for operations in a loop involving:

 A value that does not change in the loop, the
region constant, and

 A value that varies systematically from iteration to
iteration, the induction variable

 Create a new induction variable that directly
computes the sequence of values produced
by the original one; use an addition in each
iteration to update the value

11/8/2011 © 2002-11 Hal Perkins & UW CSE S-14

Some Enabling
Transformations

 Inline substitution (procedure bodies)

 Block cloning

 Loop Unrolling

 Loop Unswitching

Inline Substitution

 Idea: Replace method calls with a copy of the
method body. Instead of
 x = foo.getY();

use

 x = foo.y

 Eliminates call overhead

 Opens possibilities for other optimizations

 But: Possible code bloat, need to catch changes
to inlined code

 Still, huge win for much object-oriented code

11/8/2011 © 2002-11 Hal Perkins & UW CSE S-15

Code Replication

 Idea: duplicate code to increase
chances for optimizations, better code
generation

 Tradeoff: larger code size, potential
interactions with caches, registers

11/8/2011 © 2002-11 Hal Perkins & UW CSE S-16

11/8/2011 © 2002-11 Hal Perkins & UW CSE S-17

Code Replication Example

 Original

if (x < y) {
 p = x+y;
} else {
 p = z + 1;
}
q = p*3;
w = p + q;

 Duplicating code; larger
basic blocks to optimize

if (x < y) {
 p = x+y;
 q = p*3;
 w = p + q;
} else {
 p = z + 1;
 q = p*3;
 w = p + q;
}

11/8/2011 © 2002-11 Hal Perkins & UW CSE S-18

Loop Unrolling

 Idea: Replicate the loop body to expose
inter-iteration optimization possibilities

 Increases chances for good schedules and
instruction level parallelism

 Reduces loop overhead

 Catch – need to handle dependencies
between iterations carefully

11/8/2011 © 2002-11 Hal Perkins & UW CSE S-19

Loop Unrolling Example

 Original
for (i=1, i<=n, i++)
 a[i] = b[i];

 Unrolled by 4
i=1;
while (i+3 <= n) {

a[i] = a[i]+b[i];
a[i+1] = a[i+1]+b[i+1];
a[i+2] = a[i+2]+b[i+2];
a[i+3] = a[i+3]+b[i+3];

 a+=4;
}
while (i <= n) {
 a[i] = a[i]+b[i];
 i++;
}

11/8/2011 © 2002-11 Hal Perkins & UW CSE S-20

Loop Unswitching

 Idea: if the condition in an if-then-else
is loop invariant, rewrite the loop by
pulling the if-then-else out of the loop
and generating a tailored copy of the
loop for each half of the new if

 After this transformation, both loops have
simpler control flow – more chances for
rest of compiler to do better

11/8/2011 © 2002-11 Hal Perkins & UW CSE S-21

Loop UnswitchingExample

 Original
for (i=1, i<=n, i++)
 if (x > y)
 a[i] = b[i]*x;
 else
 a[i] = b[i]*y

 Unswitched
if (x > y)
 for (i = 1; i < n; i++)
 a[i] = b[i]*x;
 else
 a[i] = b[i]*y;

11/8/2011 © 2002-11 Hal Perkins & UW CSE S-22

Summary

 This is just a sampler

 Hundreds of transformations in the literature

 We will look at several in more detail, particularly
involving loops

 Big part of engineering a compiler is to decide
which transformations to use, in what order,
and when to repeat them

 Different tradeoffs depending on compiler goals

