CSE P 501 – Compilers

Dataflow Analysis
Hal Perkins
Autumn 2011
Agenda

- Initial example: dataflow analysis for common subexpression elimination
- Other analysis problems that work in the same framework
The Story So Far...

- Redundant expression elimination
 - Local Value Numbering
 - Superlocal Value Numbering
 - Extends VN to EBBs
 - SSA-like namespace
 - Dominator VN Technique (DVNT)
- All of these propagate along forward edges
- None are global
 - In particular, can’t handle back edges (loops)
Dominator Value Numbering

- Most sophisticated algorithm so far
- Still misses some opportunities
- Can’t handle loops
Available Expressions

- Goal: use dataflow analysis to find common subexpressions whose range spans basic blocks
- Idea: calculate available expressions at beginning of each basic block
- Avoid re-evaluation of an available expression – use a copy operation
“Available” and Other Terms

- An expression e is *defined* at point p in the CFG if its value is computed at p
 - Sometimes called *definition site*

- An expression e is *killed* at point p if one of its operands is defined at p
 - Sometimes called *kill site*

- An expression e is *available* at point p if every path leading to p contains a prior definition of e and e is not killed between that definition and p
Available Expression Sets

- For each block b, define
 - $\text{AVAIL}(b)$ – the set of expressions available on entry to b
 - $\text{NKILL}(b)$ – the set of expressions not killed in b
 - $\text{DEF}(b)$ – the set of expressions defined in b and not subsequently killed in b
Computing Available Expressions

- $\text{AVAIL}(b)$ is the set

 $\text{AVAIL}(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x)))$

- $\text{preds}(b)$ is the set of b’s predecessors in the control flow graph

- This gives a system of simultaneous equations – a dataflow problem!
Name Space Issues

- In previous value-numbering algorithms, we used a SSA-like renaming to keep track of versions.
- In global dataflow problems, we use the original namespace.
 - The KILL information captures when a value is no longer available.
GCSE with Available Expressions

- For each block b, compute $\text{DEF}(b)$ and $\text{NKILL}(b)$
- For each block b, compute $\text{AVAIL}(b)$
- For each block b, value number the block starting with $\text{AVAIL}(b)$
- Replace expressions in $\text{AVAIL}(b)$ with references to the previously computed values
Global CSE Replacement

- After analysis and before transformation, assign a global name to each expression e by hashing on e
- During transformation step
 - At each evaluation of e, insert copy
 $\text{name}(e) = e$
 - At each reference to e, replace e with $\text{name}(e)$
Analysis

- Main problem – inserts extraneous copies at all definitions and uses of every e that appears in any $\text{AVAIL}(b)$
 - But the extra copies are dead and easy to remove
 - Useful copies often coalesce away when registers and temporaries are assigned

- Common strategy
 - Insert copies that might be useful
 - Let dead code elimination sort it out later
Computing Available Expressions

- Big Picture
 - Build control-flow graph
 - Calculate initial local data – $\text{DEF}(b)$ and $\text{NKILL}(b)$
 - This only needs to be done once
 - Iteratively calculate $\text{AVAIL}(b)$ by repeatedly evaluating equations until nothing changes
 - Another fixed-point algorithm
Computing DEF and NKILL (1)

For each block b with operations $o_1, o_2, ..., o_k$

- $KILLED = \emptyset$
- $DEF(b) = \emptyset$
- for $i = k$ to 1
 - assume o_i is "$x = y + z$"
 - if ($y \notin KILLED$ and $z \notin KILLED$)
 - add "$y + z$" to $DEF(b)$
 - add x to $KILLED$

...
Computing DEF and NKILL (2)

After computing DEF and KILLED for a block \(b \),

\[
NKILL(b) = \{ \text{all expressions} \}
\]

for each expression \(e \)

for each variable \(v \in e \)

if \(v \in \text{KILLED} \) then

\[
NKILL(b) = NKILL(b) - e
\]
Computing Available Expressions

Once DEF(b) and NKILL(b) are computed for all blocks b:

Worklist = { all blocks b }

while (Worklist ≠ ∅)

 remove a block b from Worklist
 recompute AVAIL(b)
 if AVAIL(b) changed
 Worklist = Worklist ∪ successors(b)
Comparing Algorithms

- LVN – Local Value Numbering
- SVN – Superlocal Value Numbering
- DVN – Dominator-based Value Numbering
- GRE – Global Redundancy Elimination

Diagram:
- A: \(m = a + b \)
 \(n = a + b \)
- B: \(p = c + d \)
 \(r = c + d \)
- C: \(q = a + b \)
 \(r = c + d \)
- D: \(e = b + 18 \)
 \(s = a + b \)
 \(u = e + f \)
- E: \(e = a + 17 \)
 \(t = c + d \)
 \(u = e + f \)
- F: \(v = a + b \)
 \(w = c + d \)
 \(x = e + f \)
- G: \(y = a + b \)
 \(z = c + d \)
Comparing Algorithms (2)

- LVN => SVN => DVN form a strict hierarchy – later algorithms find a superset of previous information

- Global RE finds a somewhat different set
 - Discovers $e+f$ in F (computed in both D and E)
 - Misses identical values if they have different names (e.g., $a+b$ and $c+d$ when $a=c$ and $b=d$)
 - Value Numbering catches this $17 \neq 42$
Dataflow analysis

- Global redundancy elimination is the first example of a *dataflow analysis* problem
- Many similar problems can be expressed in a similar framework
- Only the first part of the story – once we’ve discovered facts, we then need to use them to improve code
Dataflow Analysis (1)

- A collection of techniques for compile-time reasoning about run-time values
- Almost always involves building a graph
 - Trivial for basic blocks
 - Control-flow graph or derivative for global problems
 - Call graph or derivative for whole-program problems
Dataflow Analysis (2)

- Usually formulated as a set of *simultaneous equations* (dataflow problem)
 - Sets attached to nodes and edges
 - Need a lattice (or semilattice) to describe values
 - In particular, has an appropriate operator to combine values and an appropriate "bottom" or minimal value
Dataflow Analysis (3)

- Desired solution is usually a *meet over all paths* (MOP) solution
 - "What is true on every path from entry"
 - "What can happen on any path from entry"
- Usually relates to safety of optimization
Dataflow Analysis (4)

- Limitations
 - Precision – “up to symbolic execution”
 - Assumes all paths taken
 - Sometimes cannot afford to compute full solution
 - Arrays – classic analysis treats each array as a single fact
 - Pointers – difficult, expensive to analyze
 - Imprecision rapidly adds up

- For scalar values we can quickly solve simple problems
Example: Available Expressions

- This is the analysis we did earlier to eliminate redundant expression evaluations

- Equation:
 \[
 \text{AVAIL}(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup \text{AVAIL}(x) \cap \text{NKILL}(x))
 \]
Characterizing Dataflow Analysis

- All of these algorithms involve sets of facts about each basic block \(b \):
 - \(\text{IN}(b) \) – facts true on entry to \(b \)
 - \(\text{OUT}(b) \) – facts true on exit from \(b \)
 - \(\text{GEN}(b) \) – facts created and not killed in \(b \)
 - \(\text{KILL}(b) \) – facts killed in \(b \)

- These are related by the equation:
 \[
 \text{OUT}(b) = \text{GEN}(b) \cup (\text{IN}(b) - \text{KILL}(b))
 \]

- Solve this iteratively for all blocks
- Sometimes information propagates forward; sometimes backward
Example: Live Variable Analysis

- A variable \(\nu \) is *live* at point \(p \) iff there is *any* path from \(p \) to a use of \(\nu \) along which \(\nu \) is not redefined.

- Some uses:
 - Register allocation – only live variables need a register (or temporary)
 - Eliminating useless stores
 - Detecting uses of uninitialized variables
 - Improve SSA construction – only need \(\Phi \)-function for variables that are live in a block (later)
Liveness Analysis Sets

- For each block b, define:
 - $\text{use}[b] = \text{variable used in } b \text{ before any definition}$
 - $\text{def}[b] = \text{variable defined in } b \text{ & not killed}$
 - $\text{in}[b] = \text{variables live on entry to } b$
 - $\text{out}[b] = \text{variables live on exit from } b$
Equations for Live Variables

- Given the preceding definitions, we have
 \[\text{in}[b] = \text{use}[b] \cup (\text{out}[b] - \text{def}[b]) \]
 \[\text{out}[b] = \bigcup_{s \in \text{succ}[b]} \text{in}[s] \]

- Algorithm
 - Set \(\text{in}[b] = \text{out}[b] = \emptyset \)
 - Update in, out until no change
Example (1 stmt per block)

- Code

\[
\begin{align*}
\text{a} & := 0 \\
\text{L: b} & := \text{a+1} \\
\text{c} & := \text{c+b} \\
\text{a} & := \text{b*2} \\
\text{if a < N goto L} \\
\text{return c}
\end{align*}
\]
Calculation

<table>
<thead>
<tr>
<th>Block</th>
<th>Use</th>
<th>Def</th>
<th>Out</th>
<th>In</th>
<th>Out</th>
<th>In</th>
<th>Out</th>
<th>In</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>c</td>
<td>-</td>
<td>-c</td>
<td>-c</td>
<td>-c</td>
<td>-c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>a</td>
<td>-</td>
<td>c,a</td>
<td>a,c</td>
<td>a,c</td>
<td>a,c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>b,a</td>
<td>a,c</td>
<td>b,c</td>
<td>a,c</td>
<td>b,c</td>
<td>b,c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>b,c</td>
<td>c</td>
<td>b,c</td>
<td>b,c</td>
<td>b,c</td>
<td>b,c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a,b</td>
<td>a,c</td>
<td>c</td>
<td>a,c</td>
<td>c</td>
<td>a,c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-a</td>
<td>a,c</td>
<td>c</td>
<td>a,c</td>
<td>c</td>
<td>a,c</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
in[b] = \text{use}[b] \cup (\text{out}[b] - \text{def}[b])
\]

\[
\text{out}[b] = \cup_{s \in \text{succ}[b]} \text{in}[s]
\]

1: \(a := 0\)
2: \(b := a + 1\)
3: \(c := c + b\)
4: \(a := b + 2\)
5: \(a < N\)
6: return \(c\)
Equations for Live Variables v2

- Many problems have more than one formulation. For example, Live Variables...
- Sets
 - USED(b) – variables used in b before being defined in b
 - NOTDEF(b) – variables not defined in b
 - LIVE(b) – variables live on exit from b
- Equation
 \[
 \text{LIVE}(b) = \bigcup_{s \in \text{succ}(b)} \text{USED}(s) \cup \text{(LIVE}(s) \cap \neg \text{NOTDEF}(s))
 \]
Example: Reaching Definitions

- A definition d of some variable ν reaches operation i iff i reads the value of ν and there is a path from d to i that does not define ν

- Use:
 - Find all of the possible definition points for a variable in an expression
Equations for Reaching Definitions

- **Sets**
 - $\text{DEFOUT}(b)$ – set of definitions in b that reach the end of b (i.e., not subsequently redefined in b)
 - $\text{SURVIVED}(b)$ – set of all definitions not obscured by a definition in b
 - $\text{REACHES}(b)$ – set of definitions that reach b

- **Equation**
 $$\text{REACHES}(b) = \bigcup_{p \in \text{preds}(b)} \text{DEFOUT}(p) \cup \text{(REACHES}(p) \cap \text{SURVIVED}(p))$$
Example: Very Busy Expressions

- An expression e is considered very busy at some point p if e is evaluated and used along every path that leaves p, and evaluating e at p would produce the same result as evaluating it at the original locations.

- Use:
 - Code hoisting – move e to p (reduces code size; no effect on execution time)
Equations for Very Busy Expressions

- **Sets**
 - USED(b) – expressions used in b before they are killed
 - KILLED(b) – expressions redefined in b before they are used
 - VERYBUSY(b) – expressions very busy on exit from b

- **Equation**
 \[
 \text{VERYBUSY}(b) = \bigcap_{s \in \text{succ}(b)} \text{USED}(s) \cup \text{VERYBUSY}(s) - \text{KILLED}(s)
 \]
Efficiency of Dataflow Analysis

- The algorithms eventually terminate, but the expected time needed can be reduced by picking a good order to visit nodes in the CFG depending on how information flows
 - Forward problems – reverse postorder
 - Backward problems - postorder
Using Dataflow Information

- A few examples of possible transformations...
Classic Common-Subexpression Elimination

- In a statement $s: t := x \text{ op } y$, if $x \text{ op } y$ is available at s then it need not be recomputed.

- Analysis: compute *reaching expressions* i.e., statements $n: v := x \text{ op } y$ such that the path from n to s does not compute $x \text{ op } y$ or define x or y.
Classic CSE

- If $x \text{ op } y$ is defined at n and reaches s
 - Create new temporary w
 - Rewrite n as
 $$n: \text{ w := x op y}$$
 $$n': \text{ v := w}$$
 - Modify statement s to be
 $$s: \text{ t := w}$$

- (Rely on copy propagation to remove extra assignments if not really needed)
Constant Propagation

- Suppose we have
 - Statement d: t := c, where c is constant
 - Statement n that uses t
- If d reaches n and no other definitions of t reach n, then rewrite n to use c instead of t
Copy Propagation

- Similar to constant propagation
- Setup:
 - Statement \(d: t := z \)
 - Statement \(n \) uses \(t \)
- If \(d \) reaches \(n \) and no other definition of \(t \) reaches \(n \), and there is no definition of \(z \) on any path from \(d \) to \(n \), then rewrite \(n \) to use \(z \) instead of \(t \)
Copy Propagation Tradeoffs

- Downside is that this can increase the lifetime of variable z and increase the need for registers or memory traffic.
 - Not worth doing if the only reason is to eliminate copies – let the register allocator deal with that.
- But it can expose other optimizations, e.g.,

 $$
 a := y + z \\
 u := y \\
 c := u + z \\
 y
 $$
- After copy propagation we can recognize the common subexpression.
Dead Code Elimination

- If we have an instruction
 \[s: a := b \text{ op } c \]
 and \(a \) is not live-out after \(s \), then \(s \) can be eliminated

- Provided it has no implicit side effects that are visible (output, exceptions, etc.)
Aliases

- A variable or memory location may have multiple names or *aliases*
 - Call-by-reference parameters
 - Variables whose address is taken (&x)
 - Expressions that dereference pointers (p.x, *p)
 - Expressions involving subscripts (a[i])
 - Variables in nested scopes