CSE P 501 – Compilers

Dataflow Analysis
Hal Perkins
Autumn 2011
Agenda

- Initial example: dataflow analysis for common subexpression elimination
- Other analysis problems that work in the same framework
The Story So Far…

- Redundant expression elimination
 - Local Value Numbering
 - Superlocal Value Numbering
 - Extends VN to EBBs
 - SSA-like namespace
 - Dominator VN Technique (DVNT)
- All of these propagate along forward edges
- None are global
 - In particular, can’t handle back edges (loops)
Dominator Value Numbering

- Most sophisticated algorithm so far
- Still misses some opportunities
- Can’t handle loops
Available Expressions

- Goal: use dataflow analysis to find common subexpressions whose range spans basic blocks
- Idea: calculate *available expressions* at beginning of each basic block
- Avoid re-evaluation of an available expression – use a copy operation
“Available” and Other Terms

- An expression e is defined at point p in the CFG if its value is computed at p
 - Sometimes called definition site
- An expression e is killed at point p if one of its operands is defined at p
 - Sometimes called kill site
- An expression e is available at point p if every path leading to p contains a prior definition of e and e is not killed between that definition and p
Available Expression Sets

- For each block b, define
 - $\text{AVAIL}(b)$ – the set of expressions available on entry to b
 - $\text{NKILL}(b)$ – the set of expressions not killed in b
 - $\text{DEF}(b)$ – the set of expressions defined in b and not subsequently killed in b
Computing Available Expressions

- **AVAIL(b)** is the set

 \[\text{AVAIL}(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x))) \]

- **preds(b)** is the set of b’s predecessors in the control flow graph

- This gives a system of simultaneous equations – a dataflow problem
Name Space Issues

- In previous value-numbering algorithms, we used a SSA-like renaming to keep track of versions.
- In global dataflow problems, we use the original namespace.
 - The KILL information captures when a value is no longer available.
GCSE with Available Expressions

- For each block b, compute DEF(b) and NKILL(b)
- For each block b, compute AVAIL(b)
- For each block b, value number the block starting with AVAIL(b)
- Replace expressions in AVAIL(b) with references to the previously computed values
Global CSE Replacement

- After analysis and before transformation, assign a global name to each expression e by hashing on e

- During transformation step
 - At each evaluation of e, insert copy $\text{name}(e) = e$
 - At each reference to e, replace e with $\text{name}(e)$
Analysis

- Main problem – inserts extraneous copies at all definitions and uses of every e that appears in any AVAIL(b)
 - But the extra copies are dead and easy to remove
 - Useful copies often coalesce away when registers and temporaries are assigned

- Common strategy
 - Insert copies that might be useful
 - Let dead code elimination sort it out later
Computing Available Expressions

- Big Picture
 - Build control-flow graph
 - Calculate initial local data – DEF(b) and NKILL(b)
 - This only needs to be done once
 - Iteratively calculate AVAIL(b) by repeatedly evaluating equations until nothing changes
 - Another fixed-point algorithm
Computing DEF and NKILL (1)

- For each block b with operations o_1, o_2, \ldots, o_k

 KILLED = \emptyset

 DEF(b) = \emptyset

 for $i = k$ to 1

 assume o_i is “x = y + z”

 if (y \notin KILLED and z \notin KILLED)

 add “y + z” to DEF(b)

 add x to KILLED

 ...

...
After computing DEF and KILLED for a block \(b \),

\[
\text{NKILL}(b) = \{ \text{all expressions} \}
\]

for each expression \(e \)

for each variable \(\nu \in e \)

if \(\nu \in \text{KILLED} \) then

\[
\text{NKILL}(b) = \text{NKILL}(b) - e
\]
Computing Available Expressions

- Once DEF(b) and NKILL(b) are computed for all blocks b:

 Worklist = \{ all blocks b \}

 while (Worklist ≠ ∅)
 remove a block b from Worklist
 recompute AVAIL(b)
 if AVAIL(b) changed
 Worklist = Worklist ∪ successors(b)
Comparing Algorithms

- LVN – Local Value Numbering
- SVN – Superlocal Value Numbering
- DVN – Dominator-based Value Numbering
- GRE – Global Redundancy Elimination
Comparing Algorithms (2)

- LVN => SVN => DVN form a strict hierarchy – later algorithms find a superset of previous information
- Global RE finds a somewhat different set
 - Discovers e+f in F (computed in both D and E)
 - Misses identical values if they have different names (e.g., a+b and c+d when a=c and b=d)
 - Value Numbering catches this
Scope of Analysis

- Larger context (EBBs, regions, global, interprocedural) sometimes helps
 - More opportunities for optimizations
- But not always
 - Introduces uncertainties about flow of control
 - Usually only allows weaker analysis
 - Sometimes has unwanted side effects
 - Can create additional pressure on registers, for example
Code Replication

- Sometimes replicating code increases opportunities – modify the code to create larger regions with simple control flow

- Two examples
 - Cloning
 - Inline substitution
Cloning

- Idea: duplicate blocks with multiple predecessors
- Tradeoff
 - More local optimization possibilities – larger blocks, fewer branches
 - But: larger code size, may slow down if it interacts badly with cache
Original VN Example

A
- \(m = a + b \)
- \(n = a + b \)

B
- \(p = c + d \)
- \(r = c + d \)

C
- \(q = a + b \)
- \(r = c + d \)

D
- \(e = b + 18 \)
- \(s = a + b \)
- \(u = e + f \)

E
- \(e = a + 17 \)
- \(t = c + d \)
- \(u = e + f \)

F
- \(v = a + b \)
- \(w = c + d \)
- \(x = e + f \)

G
- \(y = a + b \)
- \(z = c + d \)
Example with cloning

\[m = a + b \\ n = a + b \]

\[p = c + d \\ r = c + d \]
\[y = a + b \\ z = c + d \]

\[q = a + b \\ r = c + d \]

\[e = b + 18 \\ s = a + b \\ u = e + f \]
\[v = a + b \\ w = c + d \\ x = e + f \]
\[y = a + b \\ z = c + d \]

\[e = a + 17 \\ t = c + d \\ u = e + f \]
\[v = a + b \\ w = c + d \\ x = e + f \]
\[y = a + b \\ z = c + d \]
Problem: an optimizer has to treat a procedure call as if it (could have) modified all globally reachable data

- Plus there is the basic expense of calling the procedure

Inline Substitution: replace each call site with a copy of the called function body
Inline Substitution Issues

- **Pro**
 - More effective optimization – better local context and don’t need to invalidate local assumptions
 - Eliminate overhead of normal function call

- **Con**
 - Potential code bloat
 - Need to manage recompilation when either caller or callee changes
Dataflow analysis

- Global redundancy elimination is the first example of a *dataflow analysis* problem
- Many similar problems can be expressed in a similar framework
- Only the first part of the story – once we’ve discovered facts, we then need to use them to improve code
Dataflow Analysis (1)

- A collection of techniques for compile-time reasoning about run-time values
- Almost always involves building a graph
 - Trivial for basic blocks
 - Control-flow graph or derivative for global problems
 - Call graph or derivative for whole-program problems
Dataflow Analysis (2)

- Usually formulated as a set of *simultaneous equations* (dataflow problem)
 - Sets attached to nodes and edges
 - Need a lattice (or semilattice) to describe values
 - In particular, has an appropriate operator to combine values and an appropriate “bottom” or minimal value
Dataflow Analysis (3)

- Desired solution is usually a *meet over all paths* (MOP) solution
 - “What is true on every path from entry”
 - “What can happen on any path from entry”
 - Usually relates to safety of optimization
Dataflow Analysis (4)

Limitations

- Precision – “up to symbolic execution”
 - Assumes all paths taken
- Sometimes cannot afford to compute full solution
- Arrays – classic analysis treats each array as a single fact
- Pointers – difficult, expensive to analyze
 - Imprecision rapidly adds up
- For scalar values we can quickly solve simple problems
Example: Available Expressions

- This is the analysis we did earlier to eliminate redundant expression evaluations

- Equation:
 \[
 \text{AVAIL}(b) = \bigcap_{x \in \text{preds}(b)} \left(\text{DEF}(x) \cup \left(\text{AVAIL}(x) \cap \text{NKILL}(x) \right) \right)
 \]
Characterizing Dataflow Analysis

- All of these algorithms involve sets of facts about each basic block \(b \)
 - \(\text{IN}(b) \) – facts true on entry to \(b \)
 - \(\text{OUT}(b) \) – facts true on exit from \(b \)
 - \(\text{GEN}(b) \) – facts created and not killed in \(b \)
 - \(\text{KILL}(b) \) – facts killed in \(b \)

- These are related by the equation
 \[
 \text{OUT}(b) = \text{GEN}(b) \cup (\text{IN}(b) - \text{KILL}(b))
 \]

- Solve this iteratively for all blocks
- Sometimes information propagates forward; sometimes backward
Example: Live Variable Analysis

- A variable v is *live* at point p iff there is *any* path from p to a use of v along which v is not redefined.

- Some uses:
 - Register allocation – only live variables need a register (or temporary)
 - Eliminating useless stores
 - Detecting uses of uninitialized variables
 - Improve SSA construction – only need Φ-function for variables that are live in a block (later)
Liveness Analysis Sets

- For each block b, define
 - $\text{use}[b] = \text{variable used in } b \text{ before any def}$
 - $\text{def}[b] = \text{variable defined in } b \text{ & not killed}$
 - $\text{in}[b] = \text{variables live on entry to } b$
 - $\text{out}[b] = \text{variables live on exit from } b$
Equations for Live Variables

Given the preceding definitions, we have

\[\text{in}[b] = \text{use}[b] \cup (\text{out}[b] - \text{def}[b]) \]
\[\text{out}[b] = \bigcup_{s \in \text{succ}[b]} \text{in}[s] \]

Algorithm

- Set \(\text{in}[b] = \text{out}[b] = \emptyset \)
- Update \text{in}, \text{out} until no change
Example (1 stmt per block)

- Code

```
a := 0
L: b := a+1
c := c+b
a := b*2
if a < N goto L
return c
```

```
1: a:= 0
2: b:=a+1
3: c:=c+b
4: a:=b+2
5: a < N
6: return c
```
Calculation

\[\text{in}[b] = \text{use}[b] \cup (\text{out}[b] - \text{def}[b]) \]
\[\text{out}[b] = \bigcup_{s \in \text{succ}[b]} \text{in}[s] \]

1: \text{a:= 0}
2: \text{b:=a+1}
3: \text{c:=c+b}
4: \text{a:=b+2}
5: \text{a < N}
6: \text{return c}
Many problems have more than one formulation. For example, Live Variables...

Sets
- USED(b) – variables used in b before being defined in b
- NOTDEF(b) – variables not defined in b
- LIVE(b) – variables live on *exit* from b

Equation
\[
\text{LIVE}(b) = \bigcup_{s \in \text{succ}(b)} \text{USED}(s) \cup \text{LIVE}(s) \cap \text{NOTDEF}(s)
\]
Example: Reaching Definitions

- A definition d of some variable $ν$ reaches operation i iff i reads the value of $ν$ and there is a path from d to i that does not define $ν$

- Use:
 - Find all of the possible definition points for a variable in an expression
Equations for Reaching Definitions

- **Sets**
 - `\text{DEFOUT}(b)` – set of definitions in `b` that reach the end of `b` (i.e., not subsequently redefined in `b`)
 - `\text{SURVIVED}(b)` – set of all definitions not obscured by a definition in `b`
 - `\text{REACHES}(b)` – set of definitions that reach `b`

- **Equation**

\[
\text{REACHES}(b) = \bigcup_{p \in \text{preds}(b)} \text{DEFOUT}(p) \cup (\text{REACHES}(p) \cap \text{SURVIVED}(p))
\]
Example: Very Busy Expressions

- An expression \(e \) is considered very busy at some point \(p \) if \(e \) is evaluated and used along every path that leaves \(p \), and evaluating \(e \) at \(p \) would produce the same result as evaluating it at the original locations.

- Use:
 - Code hoisting – move \(e \) to \(p \) (reduces code size; no effect on execution time)
Equations for Very Busy Expressions

- **Sets**
 - **USED(b)** – expressions used in b before they are killed
 - **KILLED(b)** – expressions redefined in b before they are used
 - **VERYBUSY(b)** – expressions very busy on exit from b

- **Equation**
 \[
 \text{VERYBUSY}(b) = \bigcap_{s \in \text{succ}(b)} \text{USED}(s) \cup \left(\text{VERYBUSY}(s) - \text{KILLED}(s) \right)
 \]
Efficiency of Dataflow Analysis

- The algorithms eventually terminate, but the expected time needed can be reduced by picking a good order to visit nodes in the CFG depending on how information flows
 - Forward problems – reverse postorder
 - Backward problems - postorder
Using Dataflow Information

- A few examples of possible transformations...
Classic Common-Subexpression Elimination

- In a statement $s: t := x \text{ op } y$, if $x \text{ op } y$ is *available* at s then it need not be recomputed.

- Analysis: compute *reaching expressions* i.e., statements $n: v := x \text{ op } y$ such that the path from n to s does not compute $x \text{ op } y$ or define x or y.

Classic CSE

- If $x \text{ op } y$ is defined at n and reaches s
 - Create new temporary w
 - Rewrite n as

 $n: w := x \text{ op } y$

 $n': v := w$
 - Modify statement s to be

 $s: t := w$

- (Rely on copy propagation to remove extra assignments if not really needed)
Constant Propagation

- Suppose we have
 - Statement $d: t := c$, where c is constant
 - Statement n that uses t
- If d reaches n and no other definitions of t reach n, then rewrite n to use c instead of t
Copy Propagation

- Similar to constant propagation
- Setup:
 - Statement d: t := z
 - Statement n uses t
- If d reaches n and no other definition of t reaches n, and there is no definition of z on any path from d to n, then rewrite n to use z instead of t
Copy Propagation Tradeoffs

- Downside is that this can increase the lifetime of variable \(z \) and increase need for registers or memory traffic
 - Not worth doing if only reason is to eliminate copies – let the register allocate deal with that

- But it can expose other optimizations, e.g.,

 \[
 \begin{align*}
 a & := y + z \\
 u & := y \\
 c & := u + z
 \end{align*}
 \]

- After copy propagation we can recognize the common subexpression
Dead Code Elimination

- If we have an instruction
 \[s: a := b \text{ op } c \]
 and \(a \) is not live-out after \(s \), then \(s \) can be eliminated

 - Provided it has no implicit side effects that are visible (output, exceptions, etc.)
Aliases

- A variable or memory location may have multiple names or *aliases*
 - Call-by-reference parameters
 - Variables whose address is taken (&x)
 - Expressions that dereference pointers (p.x, *p)
 - Expressions involving subscripts (a[i])
 - Variables in nested scopes
Aliases vs Optimizations

Example:

\[p.x := 5; \quad q.x := 7; \quad a := p.x; \]

- Does reaching definition analysis show that the definition of \(p.x \) reaches \(a \)?
- (Or: do \(p \) and \(q \) refer to the same variable/object?)
- (Or: *can* \(p \) and \(q \) refer to the same thing?)
Aliases vs Optimizations

- Example

  ```c
  void f(int *p, int *q) {
    *p = 1; *q = 2;
    return *p;
  }
  ```

- How do we account for the possibility that p and q might refer to the same thing?
- Safe approximation: since it’s possible, assume it is true (but rules out a lot)
Types and Aliases (1)

- In Java, ML, MiniJava, and others, if two variables have incompatible types they cannot be names for the same location.
 - Also helps that programmer cannot create arbitrary pointers to storage in these languages.
Types and Aliases (2)

- Strategy: Divide memory locations into *alias classes* based on type information (every type, array, record field is a class).
- Implication: need to propagate type information from the semantics pass to optimizer
 - Not normally true of a minimally typed IR
- Items in different alias classes cannot refer to each other
Aliases and Flow Analysis

- Idea: Base alias classes on points where a value is created
 - Every new/malloc and each local or global variable whose address is taken is an alias class
 - Pointers can refer to values in multiple alias classes (so each memory reference is to a set of alias classes)
 - Use to calculate “may alias” information (e.g., p “may alias” q at program point s)
Using “may-alias” information

- Treat each alias class as a “variable” in dataflow analysis problems
- Example: framework for available expressions
 - Given statement \(s: M[a] := b, \)

 \[
 \begin{align*}
 \text{gen}[s] &= \{ \} \\
 \text{kill}[s] &= \{ M[x] \mid a \text{ may alias } x \text{ at } s \}
 \end{align*}
 \]
May-Alias Analysis

- Without alias analysis, #2 kills M[t] since x and t might be related
- If analysis determines that “x may-alias t” is false, M[t] is still available at #3; can eliminate the common subexpression and use copy propagation

Code

1: \(u := M[t] \)
2: \(M[x] := r \)
3: \(w := M[t] \)
4: \(b := u + w \)
Where are we now?

- Dataflow analysis is the core of classical optimizations
- Still to explore:
 - Discovering and optimizing loops
 - SSA – Static Single Assignment form