CSE P 501 – Compilers

Introduction to Optimization
Hal Perkins
Autumn 2011
Agenda

- Optimization
 - Goals
 - Scope: local, superlocal, regional, global (intraprocedural), interprocedural
- Control flow graphs
- Value numbering
- Dominators
- Ref.: Cooper/Torczon ch. 8
Code Improvement (1)

- Pick a better algorithm(!)
- Use machine resources effectively
 - Instruction selection & scheduling
 - Register allocation
 - More about these later...
Code Improvement (2)

- Local optimizations – basic blocks
 - Algebraic simplifications
 - Constant folding
 - Common subexpression elimination (i.e., redundancy elimination)
- Dead code elimination
- Specialize computation based on context
- etc., etc., ...
Code Improvement (3)

- Global optimizations
 - Code motion
 - Moving invariant computations out of loops
 - Strength reduction (replace multiplications by repeated additions, for example)
 - Global common subexpression elimination
 - Global register allocation
 - Many others...
“Optimization”

- None of these improvements are truly “optimal”
 - Hard problems
 - Proofs of optimality assume artificial restrictions

- Best we can do is to improve things
 - Most (much?) (some?) of the time
 - Realistically: try to do better for common idioms both in the code and on the machine
Example: A[i,j]

- Without any surrounding context, need to generate code to calculate

 \[
 \text{address}(A) + (i - \text{low}_1(A)) \times (\text{high}_2(A) - \text{low}_2(a) + 1) \times \text{size}(A) \\
 + (j - \text{low}_2(A)) \times \text{size}(A)
 \]

- \text{low}_1 and \text{high}_1 are subscript bounds in dimension i
- \text{address}(A) is the runtime address of first element of A

- ... And we really should be checking that i, j are in bounds
Some Optimizations for $A[i,j]$

- With more context, we can do better
- Examples
 - If A is local, with known bounds, much of the computation can be done at compile time
 - If $A[i,j]$ is in a loop where i and j change systematically, we probably can replace multiplications with additions each time around the loop to reference successive rows/columns
 - Even if not, we can move "loop-invariant" parts of the calculation outside the loop
Optimization Phase

Goal

- Discover, at compile time, information about the runtime behavior of the program, and use that information to improve the generated code.
A First Running Example: Redundancy Elimination

- An expression $x+y$ is **redundant** at a program point iff, along every path from the procedure’s entry, it has been evaluated and its constituent subexpressions (x and y) have not been redefined.

- If the compiler can prove the expression is redundant:
 - Can store the result of the earlier evaluation
 - Can replace the redundant computation with a reference to the earlier (stored) result
Common Problems in Code Improvement

- This strategy is typical of most compiler optimizations
 - First, discover opportunities through program analysis
 - Then, modify the IR to take advantage of the opportunities
 - Historically, goal usually was to decrease execution time
 - Other possibilities: reduce space, power, ...
Issues (1)

- Safety – transformation must not change program meaning
 - Must generate correct results
 - Can’t generate spurious errors
- Optimizations must be conservative
- Large part of analysis goes towards proving safety
- Can pay off to speculate (be optimistic) but then need to recover if reality is different
Issues (2)

- Profitibility
 - If a transformation is possible, is it profitable?
 - Example: loop unrolling
 - Can increase amount of work done on each iteration, i.e., reduce loop overhead
 - Can eliminate duplicate operations done on separate iterations
Issues (3)

- Downside risks
 - Even if a transformation is generally worthwhile, need to think about potential problems
 - For example:
 - Transformation might need more temporaries, putting additional pressure on registers
 - Increased code size could cause cache misses, or, in bad cases, increase page working set
Example: Value Numbering

- Technique for eliminating redundant expressions: assign an identifying number VN(n) to each expression
 - VN(x+y)=VN(j) if x+y and j have the same value
 - Use hashing over value numbers for efficiency

- Old idea (Balke 1968, Ershov 1954)
 - Invented for low-level, linear IRs
 - Equivalent methods exist for tree IRs, e.g., build a DAG
Uses of Value Numbers

- Improve the code
 - Replace redundant expressions
 - Simplify algebraic identities
 - Discover, fold, and propagate constant valued expressions
Local Value Numbering

Algorithm

- For each operation $o = \langle \text{op}, o1, o2 \rangle$ in a block
 1. Get value numbers for operands from hash lookup
 2. Hash $\langle \text{op}, \text{VN}(o1), \text{VN}(o2) \rangle$ to get a value number for o
 (If op is commutative, sort VN(o1), VN(o2) first)
 3. If o already has a value number, replace o with a reference to the value
 4. If $o1$ and $o2$ are constant, evaluate o at compile time and replace with an immediate load

- If hashing behaves well, this runs in linear time
Example

Code
\[a^3 = x^1 + y^2 \]
\[b^3 = x^1 + y^2 \]
\[a^4 = 17^4 \]
\[c^3 = x^1 + y^2 \]

Rewritten
\[\alpha^3 = x^1 + y^2 \]
\[b^3 = \alpha^3 \]
\[a^4 = 17^4 \]
\[c^3 = \alpha^3 \]
Bug in Simple Example

- If we use the original names, we get in trouble when a name is reused
- Solutions
 - Be clever about which copy of the value to use (e.g., use c=b in last statement)
 - Create an extra temporary
 - Rename around it (best!)
Renaming

- Idea: give each value a unique name
 \(a_i^j \) means \(i^{th} \) definition of \(a \) with VN = \(j \)
- Somewhat complex notation, but meaning is clear
- This is the idea behind SSA (Static Single Assignment)
 - Popular modern IR – exposes many opportunities for optimizations
Example Revisited

Code

\[
\begin{align*}
 a_0^3 &= x_0^1 + y_0^2 \\
 b_0^3 &= x_0^1 + y_0^2 \\
 a_1^4 &= 17^4 \\
 c_0^3 &= x_0^1 + y_0^2
\end{align*}
\]

Rewritten

\[
\begin{align*}
 a_0^3 &= x_0^1 + y_0^2 \\
 b_0^3 &= a_0^3 \\
 a_1^4 &= 17^4 \\
 c_0^3 &= a_0^3
\end{align*}
\]