
10/25/2011 © 2002-11 Hal Perkins & UW CSE I-1

CSE P 501 – Compilers

Static Semantics

Hal Perkins

Autumn 2011

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-2

Agenda

 Static semantics

 Types

 Attribute grammars

 Representing types

 Symbol tables

 Disclaimer: There’s more here than the
subset you need for the project

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-3

What do we need to know to
compile this?

class C {

 int a;

 C(int initial) {

 a = initial;

 }

 void setA(int val) {

 a = val;

 }

}

class Main {

 public static void main(){

 C c = new C(17);

 c.setA(42);

 }

}

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-4

Beyond Syntax

 There is a level of correctness that is not captured by
a context-free grammar
 Has a variable been declared?

 Are types consistent in an expression?

 In the assignment x=y, is y assignable to x?

 Does a method call have the right number and types of
parameters?

 In a selector p.q, is q a method or field of class instance p?

 Is variable x guaranteed to be initialized before it is used?

 Could p be null when p.q is executed?

 Etc. etc. etc.

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-5

What else do we need to
know to generate code?

 Where are fields allocated in an object?

 How big are objects? (i.e., how much storage
needs to be allocated by new)

 Where are local variables stored when a
method is called?

 Which methods are associated with an
object/class?
 In particular, how do we figure out which method

to call based on the run-time type of an object?

Semantic Analysis

 Main tasks:
 Extract types and other information from the

program
 Check language rules that go beyond the context-

free grammar
 Resolve names – connect declarations and uses
 “Understand” the program – last phase of front end

 Key data structures: symbol tables
 For each identifier in the program, record its

attributes (kind, type, etc.)
 Later: assign storage locations (stack frame offsets)

for variables; add other annotations

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-6

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-7

Some Kinds of Semantic
Information

Information Generated From Used to process

Symbol tables Declarations Expressions,
statements

Type information Declarations,
expressions

Operations

Constant/variable
information

Declarations,
expressions

Statements,
expressions

Register & memory
locations

Assigned by compiler Code generation

Values Constants Expressions

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-8

Semantic Checks

 For each language construct we want to
know:

 What semantic rules should be checked

 Specified by language definition (type compatibility,
required declarations, scope, etc., etc.)

 For an expression, what is its type (is the
expression legal in the current context?)

 For declarations, what information needs to be
captured to be used elsewhere?

A Sampling of Semantic
Checks (0)

 Appearance of a name: id

 id has been declared and is in scope

 Inferred type of id is its declared type

 Memory location assigned by compiler

 Constant: v

 Inferred type and value are explicit

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-9

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-10

A Sampling of Semantic
Checks (1)

 Binary operator: exp1 op exp2

 exp1 and exp2 have compatible types

 Identical, or

 Well-defined conversion to appropriate types

 Inferred type is a function of the operator
and operand types

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-11

A Sampling of Semantic
Checks (2)

 Assignment: exp1 = exp2

 exp1 is assignable (not a constant or expression)

 exp1 and exp2 have compatible types

 Identical, or

 exp2 can be converted to exp1 (e.g., char to int), or

 Type of exp2 is a subclass of type of exp1 (can be
decided at compile time)

 Inferred type is type of exp1

 Location where value stored assigned by compiler

A Sampling of Semantic
Checks (3)

 Cast: (exp1) exp2

 exp1 is a type

 exp2 either

 Has same type as exp1

 Can be converted to type exp1 (e.g., double to int)

 Is a superclass of exp1 (in general requires a
runtime check to verify that exp2 has type exp1)

 Is the same or a subclass of exp1 (trivial)

 Inferred type is exp1

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-12

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-13

A Sampling of Semantic
Checks (4)

 Field reference: exp.f

 exp is a reference type

 The class of exp has a field named f

 Inferred type is declared type of f

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-14

A Sampling of Semantic
Checks (5)

 Method call exp.m(e1, e2, …, en)

 exp is a reference type

 The class of exp has a method named m

 The method has n parameters

 Each argument has a type that can be
assigned to the associated parameter

 Inferred type is given by method
declaration (or is void)

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-15

A Sampling of Semantic
Checks (6)

 Return statement:
return exp;
return;

 Either
 The expression can be assigned to a variable

with the declared type of the method (if the
method is not void) – same test as for
assignments and parameters

 Or
 There’s no expression (if the method is void)

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-16

Semantic Analysis

 Parser builds abstract syntax tree
 Now need to extract semantic information

and check constraints
 Can sometimes be done during the parse, but

often easier to organize as separate phases
 And some things can’t be done on the fly, e.g.,

information about identifiers that are used before they
are declared (fields, classes)

 Information stored in symbol tables
 Generated by semantic analysis, used there and

later

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-17

Attribute Grammars

 A systematic way to think about
semantic analysis

 Sometimes used directly, but even
when not, AGs are a useful way to
organize and think about the analysis

Attribute Grammars

 Idea: associate attributes with each node
in the (abstract) syntax tree

 Examples of attributes
 Type information
 Storage location
 Assignable (e.g., expression vs variable –

lvalue vs rvalue for C/C++ programmers)
 Value (for constant expressions)
 etc. …

 Notation: X.a if a is an attribute of node X

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-18

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-19

Attribute Example

 Assume that each node has a .val attribute
giving the computed value of that node

 AST and attribution for (1+2) * (6 / 2)

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-20

Inherited and Synthesized
Attributes

 Given a production X ::= Y1 Y2 … Yn

 A synthesized attribute is X.a is a function
of some combination of attributes of Yi’s
(bottom up)

 An inherited attribute Yi.b is a function of
some combination of attributes X.a and
other Yj.c (top down)
 Sometimes restricted to, e.g., only Y’s to the

left (implications for evaluation)

Attribute Equations

 For each kind of node we give a set of
equations relating attribute values of
the node and its children

Example: plus.val = exp1.val + exp2.val

 Attribution (evaluation) means implicitly
finding a solution that satisfies all of the
equations in the tree

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-21

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-22

Informal Example of Attribute
Rules (1)

 Suppose we have the following
grammar for a trivial language:
 program ::= decl stmt

 decl ::= int id;

 stmt ::= exp = exp ;

 exp ::= id | exp + exp | 1

 Give suitable attributes for types and
lvalue/rvalue checking

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-23

Informal Example of Attribute
Rules (2)

 Attributes

 env (environment, e.g., symbol table);
synthesized by decl, inherited by stmt

 Each entry in an environment maps a name to
its type and value

 type (expression type); synthesized

 kind (variable [var, lvalue] vs value [val,
rvalue]); synthesized

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-24

Attributes for Declarations

 decl ::= int id;

 decl.env = {id, int, var}

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-25

Attributes for Program

 program ::= decl stmt

 stmt.env = decl.env

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-26

Attributes for Constants

 exp ::= 1

 exp.kind = val

 exp.type = int

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-27

Attributes for Expressions

 exp ::= id

 id.type = exp.env.lookup(id)

 exp.type = id.type

 exp.kind = id.kind

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-28

Attributes for Addition

 exp ::= exp1 + exp2

 exp1.env = exp.env

 exp2.env = exp.env

 error if exp1.type != exp2.type

 (or error if not combatable when rules are
more complex)

 exp.type = exp1.type (or exp2.type)

 exp.kind = val

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-29

Attribute Rules for Assignment

 stmt ::= exp1 = exp2;

 exp1.env = stmt.env

 exp2.env = stmt.env

 Error if exp2.type is not assignment
compatibile with exp1.type

 error if exp1.kind is not var (can’t be val)

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-30

Example

 int x; x = x + 1;

Extensions

 This can be extended to handle
sequences of declarations and
statements
 Sequence of declarations builds up a

combined environment – each decl
synthesizes a new environment from
previous plus new binding

 Full environment is passed down to
statements and expressions

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-31

Observations

 These are equational (functional)
computations

 This can be automated, provided the
attribute equations are non-circular

 Problems

 Non-local computation

 Can’t afford to literally pass around copies of
large, aggregate structures like environments

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-32

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-33

In Practice

 Attribute grammars give us a good way of
thinking about how to structure semantic
checks

 Symbol tables will hold environment
information

 Add fields to AST nodes to refer to
appropriate attributes (symbol table entries
for identifiers, types for expressions, etc.)
 Put in appropriate places in AST class heirarchy –

most statements don’t need types, for example

Symbol Tables

 Map identifiers to
<type, kind, location, other properties>

 Operations
 Lookup(id) => information

 Enter(id, information)

 Open/close scopes

 Semantic pass
 Build tables first from declarations

 Use information to check semantic rules

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-34

Aside:
Implementing Symbol Tables

 Big topic in classical compiler courses:
implementing a hashed symbol table

 These days: use the collection classes that are
provided with the standard libraries (Java, C#,
C++, ML, Haskell, etc.)
 Then tune & optimize if it really matters

 In production compilers, it really matters

 For Java:
 Map (HashMap) will solve most cases

 List (ArrayList) for ordered lists (parameters, etc.)

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-35

Symbol Tables for MiniJava (1)

 Global – Per Program Information

 Single global table to map class names to
per-class symbol tables

 Created in a pass over class definitions in AST

 Used in remaining parts of compiler to check
field/method names and extract information
about them

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-36

Symbol Tables for MiniJava (2)

 Global – Per Class Information

 1 Symbol table for each class

 1 entry per method/field declared in the class

 Contents: type information, public/private,
parameter types (for methods), storage locations
(later), etc.

 In full Java, need multiple symbol tables (or
more complex symbol table) per class or some
way to handle multiple namespaces

 Ex: The same identifier can name both a method and
a field in a class.

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-37

Symbol Tables for MiniJava (3)

 Global (cont)

 All global tables persist throughout the
compilation

 And beyond in a real Java or C# compiler…

 (e.g., symbolic information in Java .class files, MSIL
data, link-time optimization information)

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-38

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-39

Symbol Tables for MiniJava (4)

 1 local symbol table for each method

 1 entry for each local variable or parameter

 Contents: type information, storage locations
(later), etc.

 Needed only while compiling the method;
can discard when done

 But if method is processed in several passes
the tables need to persist

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-40

Beyond MiniJava

 What we aren’t dealing with: nested scopes

 Inner classes

 Nested scopes in methods – reuse of identifiers in
parallel or inner scopes, nested functions (ML,
Pascal, …)

 Basic idea: new symbol tables for inner
scopes, linked to surrounding scope’s table

 Look for identifier in inner scope; if not found look
in surrounding scope (recursively)

 Pop back up on scope exit

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-41

Engineering Issues

 In practice, want to retain O(1) lookup

 Use hash tables with additional information
to get the scope nesting right

 Scope entry/exit operations

 In multipass compilers, symbol table
info needs to persist after analysis of
inner scopes for use on later passes

 See a compiler textbook for ideas & details

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-42

Error Recovery

 What to do when an undeclared identifier is
encountered?

 Only complain once (Why?)

 Can forge a symbol table entry for it once you’ve
complained so it will be found in the future

 Assign the forged entry a type of “unknown”

 “Unknown” is the type of all malformed
expressions and is compatible with all other types

 Can avoid redundant error messages (how?)

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-43

“Predefined” Things

 Many languages have some “predefined” items
(functions, classes, standard library, …)

 Include initialization code or declarations in the
compiler to manually create symbol table
entries for these when the compiler starts up
 Rest of compiler generally doesn’t need to know

the difference between “predeclared” items and
ones found in the program

 Possible to put “standard prelude” information in a
file or data resource and use that to initialize

 Tradeoffs?

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-44

Types

 Classical roles of types in programming
languages

 Run-time safety

 Compile-time error detection

 Improved expressiveness (method or
operator overloading, for example)

 Provide information to optimizer

Terminology

Static vs. dynamic typing
• static: checking done prior to execution (e.g. compile-time)

• dynamic: checking during execution

Strong vs. weak typing
• strong: guarantees no illegal operations performed

• weak: can’t make guarantees

Caveats:
 Hybrids common

 Inconsistent usage

 common

 “untyped,” “typeless”

 could mean dynamic

 or weak

static dynamic

strong Java, SML Scheme, Ruby

weak C PERL

10/25/2011 45 © 2002-11 Hal Perkins & UW CSE

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-46

Type Systems

 Base Types

 Fundamental, atomic types

 Typical examples: int, double, char

 Compound/Constructed Types

 Built up from other types (recursively)

 Constructors include arrays, records/
structs/classes, pointers, enumerations,
functions, modules, …

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-47

Representing Types
in a Compiler

 Create a shallow class hierarchy, for
example

 abstract class Type { … } // or interface

 class ClassType extends Type { … }

 class BaseType extends Type { … }

 Should not need too many of these

Types vs ASTs

 Types are not AST nodes!

 AST = abstract representation of source
program (including source program type info)

 Types = abstract representation of types for
semantics checks, inference, etc.
 Can include information not explicitly represented

in the source code, or may describe types in ways
more convenient for processing

 Be sure you have a separate “type” class
hierarchy in your compiler distinct from the AST

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-48

Base Types

 For each base type (int, boolean, others in other
languages), create a single object to represent it
 Symbol table entries and AST nodes for expressions

refer to these to represent type info
 Usually create at compiler startup

 Useful to create a type “void” object to tag
functions that do not return a value

 Also useful to create a type “unknown” object for
errors
 (“void” and “unknown” types reduce the need for

special case code in various places in the type checker)

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-49

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-50

Compound Types

 Basic idea: use appropriate “type
constructor” object that refers to
component types

 Limited number of these – correspond
directly to type constructors in the
language (record/struct, class, array,
function,…)

 A compound type is a graph

Class Types

 Type for: class Id { fields and methods }
class ClassType extends Type {
 Type baseClassType; // ref to base class
 Map fields; // type info for fields
 Map methods; // type info for methods
}

 (Note: may not want to do this literally depending on

how class symbol tables are represented; i.e., class
symbol tables might be useful as the representation of
the class type.)

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-51

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-52

Array Types

 For regular Java this is simple: only
possibility is # of dimensions and
element type

 class ArrayType extends Type {

 int nDims;

 Type elementType;

 }

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-53

Array Types for Pascal &c.

 Pascal allows arrays to be indexed by
any discrete type

 array[indexType] of elementType

 Element type can be any other type,
including an array (i.e., 2-D array = 1-D
array of 1-D arrays)
 class GeneralArrayType extends Type {

 Type indexType;

 Type elementType;

 }

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-54

Methods/Functions

 Type of a method is its result type plus an
ordered list of parameter types

 class MethodType extends Type {

 Type resultType; // type or “void”

 List parameterTypes;

 }

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-55

Type Equivalance

 For base types this is simple

 Types are the same if they are identical

 Pointer comparison in the type checker

 Normally there are well defined rules for
coercions between arithmetic types

 Compiler inserts these automatically or when
requested by programmer (casts) – often
requires inserting cast/conversion AST nodes

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-56

Type Equivalence for
Compound Types

 Two basic strategies
 Structural equivalence: two types are the

same if they are the same kind of type and
their component types are equivalent,
recursively

 Name equivalence: two types are the same
only if they have the same name, even if
their structures match

 Different language design philosophies

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-57

Type Equivalence and
Inheritance

 Suppose we have
 class Base { … }
 class Extended extends Base { … }

 A variable declared with type Base has a
compile-time type of Base

 During execution, that variable may refer to
an object of class Base or any of its
subclasses like Extended (or can be null,
which is compatible with all class types)
 Sometimes called the runtime type

Various Notions of Equivalance

 There are usually several relations on
types that we need to deal with:

 “is the same as”

 “is assignable to”

 “is same or a subclass of”

 “is convertible to”

 Be sure to check for the right one(s)

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-58

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-59

Useful Compiler Functions

 Create a handful of methods to decide different
kinds of type compatibility:
 Types are identical
 Type t1 is assignment compatibile with t2
 Parameter list is compatible with types of expressions

in the call

 Usual modularity reasons: isolates these
decisions in one place and hides the actual type
representation from the rest of the compiler

 Probably belongs in the same package with the
type representation classes

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-60

Implementing Type Checking
for MiniJava

 Create multiple visitors for the AST

 First passe(s): gather information
 Collect global type information for classes

 Could do this in one pass, or might want to do one
pass to collect class information, then a second
one to collect per-class information about fields,
methods

 Next set of passes: go through method
bodies to check types, other semantic
constraints

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-61

Coming Attractions

 Need to start thinking about translating to
object code (actually x86(-64?) assembly
language, the default for this project)

 Next:

 x86 overview (as a target for simple compilers)

 Runtime representation of classes, objects, data,
and method stack frames

 Assembly language code for higher-level language
statements

