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Agenda 

 Static semantics 

 Types 

 Attribute grammars 

 Representing types 

 Symbol tables 

 Disclaimer: There’s more here than the 
subset you need for the project 
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What do we need to know to 
compile this? 

class C { 

 int a; 

 C(int initial) { 

  a = initial; 

 } 

 void setA(int val) { 

  a = val; 

 } 

} 

class Main { 

  public static void main(){ 

  C c = new C(17); 

  c.setA(42); 

  } 

} 
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Beyond Syntax 

 There is a level of correctness that is not captured by 
a context-free grammar 
 Has a variable been declared? 

 Are types consistent in an expression? 

 In the assignment x=y, is y assignable to x? 

 Does a method call have the right number and types of 
parameters? 

 In a selector p.q, is q a method or field of class instance p? 

 Is variable x guaranteed to be initialized before it is used? 

 Could p be null when p.q is executed? 

 Etc. etc. etc. 
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What else do we need to 
know to generate code? 

 Where are fields allocated in an object? 

 How big are objects? (i.e., how much storage 
needs to be allocated by new) 

 Where are local variables stored when a 
method is called? 

 Which methods are associated with an 
object/class? 
 In particular, how do we figure out which method 

to call based on the run-time type of an object? 



Semantic Analysis 

 Main tasks: 
 Extract types and other information from the 

program 
 Check language rules that go beyond the context-

free grammar 
 Resolve names – connect declarations and uses 
 “Understand” the program – last phase of front end 

 Key data structures: symbol tables 
 For each identifier in the program, record its 

attributes (kind, type, etc.) 
 Later: assign storage locations (stack frame offsets) 

for variables; add other annotations 
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Some Kinds of Semantic 
Information 

Information Generated From Used to process 

Symbol tables Declarations Expressions, 
statements 

Type information Declarations, 
expressions 

Operations 

Constant/variable 
information 

Declarations, 
expressions 

Statements, 
expressions 

Register & memory 
locations 

Assigned by compiler Code generation 

Values Constants Expressions 
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Semantic Checks 

 For each language construct we want to 
know: 

 What semantic rules should be checked 

 Specified by language definition (type compatibility, 
required declarations, scope, etc., etc.) 

 For an expression, what is its type (is the 
expression legal in the current context?) 

 For declarations, what information needs to be 
captured to be used elsewhere? 



A Sampling of Semantic 
Checks (0) 

 Appearance of a name: id 

 id has been declared and is in scope 

 Inferred type of id is its declared type 

 Memory location assigned by compiler 

 Constant: v 

 Inferred type and value are explicit 

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-9 



10/25/2011 © 2002-11 Hal Perkins & UW CSE I-10 

A Sampling of Semantic 
Checks (1) 

 Binary operator: exp1 op exp2  

 exp1 and exp2 have compatible types 

 Identical, or 

 Well-defined conversion to appropriate types 

 Inferred type is a function of the operator 
and operand types  
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A Sampling of Semantic 
Checks (2) 

 Assignment: exp1 = exp2  

 exp1 is assignable (not a constant or expression) 

 exp1 and exp2 have compatible types 

 Identical, or 

 exp2 can be converted to exp1 (e.g., char to int), or 

 Type of exp2 is a subclass of type of exp1  (can be 
decided at compile time) 

 Inferred type is type of exp1  

 Location where value stored assigned by compiler 



A Sampling of Semantic 
Checks (3) 

 Cast: (exp1) exp2  

 exp1 is a type  

 exp2 either 

 Has same type as exp1 

 Can be converted to type exp1 (e.g., double to int) 

 Is a superclass of exp1 (in general requires a 
runtime check to verify that exp2 has type exp1) 

 Is the same or a subclass of exp1 (trivial) 

 Inferred type is exp1 
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A Sampling of Semantic 
Checks (4) 

 Field reference:  exp.f  

 exp is a reference type 

 The class of exp has a field named f  

 Inferred type is declared type of f 
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A Sampling of Semantic 
Checks (5) 

 Method call exp.m(e1, e2, …, en) 

 exp is a reference type 

 The class of exp has a method named m 

 The method has n parameters 

 Each argument has a type that can be 
assigned to the associated parameter 

 Inferred type is given by method 
declaration (or is void) 
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A Sampling of Semantic 
Checks (6) 

 Return statement:   
return exp;  
return; 

 Either 
 The expression can be assigned to a variable 

with the declared type of the method (if the 
method is not void) – same test as for 
assignments and parameters 

 Or 
 There’s no expression (if the method is void) 
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Semantic Analysis 

 Parser builds abstract syntax tree 
 Now need to extract semantic information 

and check constraints 
 Can sometimes be done during the parse, but 

often easier to organize as separate phases 
 And some things can’t be done on the fly, e.g., 

information about identifiers that are used before they 
are declared (fields, classes) 

 Information stored in symbol tables 
 Generated by semantic analysis, used there and 

later 
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Attribute Grammars 

 A systematic way to think about 
semantic analysis 

 Sometimes used directly, but even 
when not, AGs are a useful way to 
organize and think about the analysis 



Attribute Grammars 

 Idea: associate attributes with each node 
in the (abstract) syntax tree 

 Examples of attributes 
 Type information 
 Storage location 
 Assignable (e.g., expression vs variable – 

lvalue vs rvalue for C/C++ programmers) 
 Value (for constant expressions) 
 etc. … 

 Notation: X.a if a is an attribute of node X 
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Attribute Example 

 Assume that each node has a .val attribute 
giving the computed value of that node 

 AST and attribution for (1+2) * (6 / 2) 
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Inherited and Synthesized 
Attributes 

 Given a production X ::= Y1 Y2  … Yn 

 A synthesized attribute is X.a is a function 
of some combination of attributes of Yi’s 
(bottom up) 

 An inherited attribute Yi.b is a function of 
some combination of attributes X.a and 
other Yj.c (top down) 
 Sometimes restricted to, e.g., only Y’s to the 

left (implications for evaluation) 



Attribute Equations 

 For each kind of node we give a set of 
equations relating attribute values of 
the node and its children 

Example: plus.val = exp1.val + exp2.val 

 Attribution (evaluation) means implicitly 
finding a solution that satisfies all of the 
equations in the tree 
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Informal Example of Attribute 
Rules (1) 

 Suppose we have the following 
grammar for a trivial language: 
 program ::= decl stmt 

 decl ::= int id; 

 stmt ::= exp = exp ; 

 exp ::= id | exp + exp | 1 

 Give suitable attributes for types and 
lvalue/rvalue checking 
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Informal Example of Attribute 
Rules (2) 

 Attributes 

 env (environment, e.g., symbol table); 
synthesized by decl, inherited by stmt 

 Each entry in an environment maps a name to 
its type and value 

 type (expression type); synthesized 

 kind (variable [var, lvalue] vs value [val, 
rvalue]); synthesized 
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Attributes for Declarations 

 decl ::= int id; 

 decl.env = {id, int, var} 



10/25/2011 © 2002-11 Hal Perkins & UW CSE I-25 

Attributes for Program 

 program ::= decl stmt 

 stmt.env = decl.env 
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Attributes for Constants 

 exp ::= 1 

 exp.kind = val 

 exp.type = int 
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Attributes for Expressions 

 exp ::= id 

 id.type = exp.env.lookup(id) 

 exp.type = id.type 

 exp.kind = id.kind 
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Attributes for Addition 

 exp ::= exp1 + exp2 

 exp1.env = exp.env 

 exp2.env = exp.env 

 error if exp1.type != exp2.type 

 (or error if not combatable when rules are 
more complex) 

 exp.type = exp1.type (or exp2.type) 

 exp.kind = val 
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Attribute Rules for Assignment 

 stmt ::= exp1 = exp2; 

 exp1.env = stmt.env 

 exp2.env = stmt.env 

 Error if exp2.type is not assignment 
compatibile with exp1.type 

 error if exp1.kind is not var (can’t be val) 
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Example 

 int x; x = x + 1; 



Extensions 

 This can be extended to handle 
sequences of declarations and 
statements 
 Sequence of declarations builds up a 

combined environment – each decl 
synthesizes a new environment from 
previous plus new binding 

 Full environment is passed down to 
statements and expressions 
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Observations 

 These are equational (functional) 
computations  

 This can be automated, provided the 
attribute equations are non-circular 

 Problems 

 Non-local computation 

 Can’t afford to literally pass around copies of 
large, aggregate structures like environments 

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-32 



10/25/2011 © 2002-11 Hal Perkins & UW CSE I-33 

In Practice 

 Attribute grammars give us a good way of 
thinking about how to structure semantic 
checks 

 Symbol tables will hold environment 
information 

 Add fields to AST nodes to refer to 
appropriate attributes (symbol table entries 
for identifiers, types for expressions, etc.) 
 Put in appropriate places in AST class heirarchy – 

most statements don’t need types, for example 



Symbol Tables 

 Map identifiers to  
<type, kind, location, other properties> 

 Operations 
 Lookup(id) => information 

 Enter(id, information) 

 Open/close scopes 

 Semantic pass 
 Build tables first from declarations 

 Use information to check semantic rules 
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Aside:  
Implementing Symbol Tables 

 Big topic in classical compiler courses: 
implementing a hashed symbol table 

 These days: use the collection classes that are 
provided with the standard libraries (Java, C#, 
C++, ML, Haskell, etc.) 
 Then tune & optimize if it really matters 

 In production compilers, it really matters 

 For Java: 
 Map (HashMap) will solve most cases 

 List (ArrayList) for ordered lists (parameters, etc.) 

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-35 



Symbol Tables for MiniJava (1) 

 Global – Per Program Information 

 Single global table to map class names to 
per-class symbol tables 

 Created in a pass over class definitions in AST 

 Used in remaining parts of compiler to check 
field/method names and extract information 
about them 
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Symbol Tables for MiniJava (2) 

 Global – Per Class Information 

 1 Symbol table for each class 

 1 entry per method/field declared in the class 

 Contents: type information, public/private, 
parameter types (for methods), storage locations 
(later), etc. 

 In full Java, need multiple symbol tables (or 
more complex symbol table) per class or some 
way to handle multiple namespaces 

 Ex: The same identifier can name both a method and 
a field in a class. 
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Symbol Tables for MiniJava (3) 

 Global (cont) 

 All global tables persist throughout the 
compilation 

 And beyond in a real Java or C# compiler… 

 (e.g., symbolic information in Java .class files, MSIL 
data, link-time optimization information) 
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Symbol Tables for MiniJava (4) 

 1 local symbol table for each method 

 1 entry for each local variable or parameter 

 Contents: type information, storage locations 
(later), etc. 

 Needed only while compiling the method; 
can discard when done 

 But if method is processed in several passes 
the tables need to persist 
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Beyond MiniJava 

 What we aren’t dealing with: nested scopes 

 Inner classes 

 Nested scopes in methods – reuse of identifiers in 
parallel or inner scopes, nested functions (ML, 
Pascal, …) 

 Basic idea: new symbol tables for inner 
scopes, linked to surrounding scope’s table 

 Look for identifier in inner scope; if not found look 
in surrounding scope (recursively) 

 Pop back up on scope exit  
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Engineering Issues 

 In practice, want to retain O(1) lookup 

 Use hash tables with additional information 
to get the scope nesting right 

 Scope entry/exit operations 

 In multipass compilers, symbol table 
info needs to persist after analysis of 
inner scopes for use on later passes 

 See a compiler textbook for ideas & details 
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Error Recovery 

 What to do when an undeclared identifier is 
encountered? 

 Only complain once (Why?) 

 Can forge a symbol table entry for it once you’ve 
complained so it will be found in the future 

 Assign the forged entry a type of “unknown” 

 “Unknown” is the type of all malformed 
expressions and is compatible with all other types  

 Can avoid redundant error messages (how?) 
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“Predefined” Things 

 Many languages have some “predefined” items 
(functions, classes, standard library, …) 

 Include initialization code or declarations in the 
compiler to manually create symbol table 
entries for these when the compiler starts up 
 Rest of compiler generally doesn’t need to know 

the difference between “predeclared” items and 
ones found in the program 

 Possible to put “standard prelude” information in a 
file or data resource and use that to initialize 

 Tradeoffs? 
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Types 

 Classical roles of types in programming 
languages 

 Run-time safety 

 Compile-time error detection 

 Improved expressiveness (method or 
operator overloading, for example) 

 Provide information to optimizer 



Terminology 

Static vs. dynamic typing  
• static: checking done prior to execution (e.g. compile-time)  

• dynamic: checking during execution  

Strong vs. weak typing  
• strong: guarantees no illegal operations performed  

• weak: can’t make guarantees 

Caveats: 
 Hybrids common 

 Inconsistent usage  

 common 

 “untyped,” “typeless”  

 could mean dynamic  

 or weak 

static dynamic 

strong Java, SML Scheme, Ruby 

weak C PERL 
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Type Systems 

 Base Types 

 Fundamental, atomic types 

 Typical examples: int, double, char 

 Compound/Constructed Types 

 Built up from other types (recursively) 

 Constructors include arrays, records/ 
structs/classes, pointers, enumerations, 
functions, modules, … 
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Representing Types  
in a Compiler 

 Create a shallow class hierarchy, for 
example 

  abstract class Type { … }   // or interface 

  class ClassType extends Type { … } 

   class BaseType extends Type { … } 

 Should not need too many of these 



Types vs ASTs 

 Types are not AST nodes! 

 AST = abstract representation of source 
program (including source program type info) 

 Types = abstract representation of types for 
semantics checks, inference, etc. 
 Can include information not explicitly represented 

in the source code, or may describe types in ways 
more convenient for processing 

 Be sure you have a separate “type” class 
hierarchy in your compiler distinct from the AST 
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Base Types 

 For each base type (int, boolean, others in other 
languages), create a single object to represent it 
 Symbol table entries and AST nodes for expressions 

refer to these to represent type info 
 Usually create at compiler startup 

 Useful to create a type “void” object to tag 
functions that do not return a value  

 Also useful to create a type “unknown” object for 
errors 
 ( “void” and “unknown” types reduce the need for 

special case code in various places in the type checker) 
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Compound Types 

 Basic idea: use appropriate “type 
constructor” object that refers to 
component types 

 Limited number of these – correspond 
directly to type constructors in the 
language (record/struct, class, array, 
function,…) 

 A compound type is a graph 



Class Types 

 Type for: class Id { fields and methods } 
class ClassType extends Type { 
 Type baseClassType;    // ref to base class 
 Map fields;     // type info for fields 
 Map methods;     // type info for methods 
} 

 
 (Note: may not want to do this literally depending on 

how class symbol tables are represented; i.e., class 
symbol tables might be useful as the representation of 
the class type.) 
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Array Types 

 For regular Java this is simple: only 
possibility is # of dimensions and 
element type 

 
 class ArrayType extends Type { 

  int nDims; 

  Type elementType; 

 } 
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Array Types for Pascal &c. 

 Pascal allows arrays to be indexed by 
any discrete type  

 array[indexType] of elementType 

 Element type can be any other type, 
including an array (i.e., 2-D array = 1-D 
array of 1-D arrays) 
 class GeneralArrayType extends Type { 

  Type indexType; 

  Type elementType; 

 } 
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Methods/Functions 

 Type of a method is its result type plus an 
ordered list of parameter types 

 class MethodType extends Type { 

  Type resultType;      // type or “void” 

  List parameterTypes; 

 } 
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Type Equivalance 

 For base types this is simple 

 Types are the same if they are identical 

 Pointer comparison in the type checker 

 Normally there are well defined rules for 
coercions between arithmetic types 

 Compiler inserts these automatically or when 
requested by programmer (casts) – often 
requires inserting cast/conversion AST nodes 
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Type Equivalence for 
Compound Types 

 Two basic strategies 
 Structural equivalence: two types are the 

same if they are the same kind of type and 
their component types are equivalent, 
recursively 

 Name equivalence: two types are the same 
only if they have the same name, even if 
their structures match 

 Different language design philosophies 
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Type Equivalence and 
Inheritance  

 Suppose we have 
 class Base { … } 
 class Extended extends Base { … } 

 A variable declared with type Base has a 
compile-time type of Base 

 During execution, that variable may refer to 
an object of class Base or any of its 
subclasses like Extended (or can be null, 
which is compatible with all class types) 
 Sometimes called the runtime type 



Various Notions of Equivalance 

 There are usually several relations on 
types that we need to deal with: 

 “is the same as” 

 “is assignable to” 

 “is same or a subclass of” 

 “is convertible to” 

 Be sure to check for the right one(s) 

10/25/2011 © 2002-11 Hal Perkins & UW CSE I-58 



10/25/2011 © 2002-11 Hal Perkins & UW CSE I-59 

Useful Compiler Functions 

 Create a handful of methods to decide different 
kinds of type compatibility: 
 Types are identical 
 Type t1 is assignment compatibile with t2 
 Parameter list is compatible with types of expressions 

in the call 

 Usual modularity reasons: isolates these 
decisions in one place and hides the actual type 
representation from the rest of the compiler 

 Probably belongs in the same package with the 
type representation classes 
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Implementing Type Checking 
for MiniJava 

 Create multiple visitors for the AST 

 First passe(s): gather information 
 Collect global type information for classes 

 Could do this in one pass, or might want to do one 
pass to collect class information, then a second 
one to collect per-class information about fields, 
methods 

 Next set of passes: go through method 
bodies to check types, other semantic 
constraints 
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Coming Attractions 

 Need to start thinking about translating to 
object code (actually x86(-64?) assembly 
language, the default for this project) 

 Next:  

 x86 overview (as a target for simple compilers) 

 Runtime representation of classes, objects, data, 
and method stack frames 

 Assembly language code for higher-level language 
statements 


