CSE P 501 – Compilers

LL and Recursive-Descent Parsing
Hal Perkins
Autumn 2011
Agenda

- Top-Down Parsing
- Predictive Parsers
- LL(k) Grammars
- Recursive Descent
- Grammar Hacking
 - Left recursion removal
 - Factoring
Basic Parsing Strategies (1)

- **Bottom-up**
 - Build up tree from leaves
 - Shift next input or reduce a handle
 - Accept when all input read and reduced to start symbol of the grammar
 - LR(k) and subsets (SLR(k), LALR(k), ...)

![Diagram of parsing tree with remaining input at the bottom]
Basic Parsing Strategies (2)

- Top-Down
 - Begin at root with start symbol of grammar
 - Repeatedly pick a non-terminal and expand
 - Success when expanded tree matches input
 - LL(k)
Top-Down Parsing

- Situation: have completed part of a derivation
 \[S \Rightarrow^* wA_\alpha \Rightarrow^* wxy \]
- Basic Step: Pick some production
 \[A ::= \beta_1 \beta_2 \ldots \beta_n \]
 that will properly expand \(A \) to match the input
 - Want this to be deterministic
Predictive Parsing

- If we are located at some non-terminal A, and there are two or more possible productions
 - $A ::= \alpha$
 - $A ::= \beta$
 we want to make the correct choice by looking at just the next input symbol
- If we can do this, we can build a predictive parser that can perform a top-down parse without backtracking
Example

- Programming language grammars are often suitable for predictive parsing
- Typical example

\[
stmt ::= id = exp ; | \text{return } exp ; \\
| \text{if (} exp \text{) stmt } | \text{while (} exp \text{) stmt }
\]

If the first part of the unparsed input begins with the tokens

IF LPAREN ID(x) ...

we should expand \textit{stmt} to an if-statement
LL(k) Property

- A grammar has the LL(1) property if, for all non-terminals A, if productions $A ::= \alpha$ and $A ::= \beta$ both appear in the grammar, then it is the case that
 \[
 \text{FIRST}(\alpha) \cap \text{FIRST}(\beta) = \emptyset
 \]
- If a grammar has the LL(1) property, we can build a predictive parser for it that uses 1-symbol lookahead
LL(k) Parsers

- An LL(k) parser
 - Scans the input Left to right
 - Constructs a Leftmost derivation
 - Looking ahead at most k symbols
- 1-symbol lookahead is enough for many practical programming language grammars
 - LL(k) for $k>1$ is rare in practice
Table-Driven LL(k) Parsers

- As with LR(k), a table-driven parser can be constructed from the grammar

 Example
 1. $S ::= (\ S \) \ S$
 2. $S ::= [\ S \] \ S$
 3. $S ::= \varepsilon$

- Table

<table>
<thead>
<tr>
<th></th>
<th>(</th>
<th>)</th>
<th>[</th>
<th>]</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
LL vs LR (1)

- Table-driven parsers for both LL and LR can be automatically generated by tools.
- LL(1) has to make a decision based on a single non-terminal and the next input symbol.
- LR(1) can base the decision on the entire left context (i.e., contents of the stack) as well as the next input symbol.
LL vs LR (2)

- LR(1) is more powerful than LL(1)
 - Includes a larger set of languages
- (editorial opinion) If you’re going to use a tool-generated parser, might as well use LR
 - But there are some very good LL parser tools out there (ANTLR, JavaCC, ...) that might win for non-LL vs LR reasons
Recursive-Descent Parsers

- An advantage of top-down parsing is that it is easy to implement by hand
- Key idea: write a function (procedure, method) corresponding to each non-terminal in the grammar
 - Each of these functions is responsible for matching its non-terminal with the next part of the input
Example: Statements

- Grammar

 \[stmt ::= \text{id} = \text{exp} \; | \; \text{return} \; \text{exp} \; | \; \text{if} (\; \text{exp} \; \text{stmt} \; | \; \text{while} (\; \text{exp} \; \text{stmt} \) \]

- Method for this grammar rule

 // parse stmt ::= id=exp; | ...

 void stmt() {
 switch(nextToken) {
 RETURN: returnStmt(); break;
 IF: ifStmt(); break;
 WHILE: whileStmt(); break;
 ID: assignStmt(); break;
 }
 }
Example (cont)

// parse while (exp) stmt
void whileStmt() {
 // skip "while ("
 getNextToken();
 getNextToken();

 // parse condition
 exp();

 // skip ")"
 getNextToken();

 // parse stmt
 stmt();
}

// parse return exp ;
void returnStmt() {
 // skip "return"
 getNextToken();

 // parse expression
 exp();

 // skip ";
 getNextToken();
}

Invariant for Functions

- The parser functions need to agree on where they are in the input

Useful invariant: When a parser function is called, the current token (next unprocessed piece of the input) is the token that begins the expanded non-terminal being parsed

Corollary: when a parser function is done, it must have completely consumed input correspond to that non-terminal
Possible Problems

- Two common problems for recursive-descent (and LL(1)) parsers
 - Left recursion (e.g., \(E ::= E + T \mid \ldots \))
 - Common prefixes on the right hand side of productions
Left Recursion Problem

- Grammar rule

 \[expr ::= expr \, + \, term \]
 \[\mid term \]

- Code

 // parse expr ::= ...
 void expr() {
 expr();
 if (current token is PLUS) {
 getNextToken();
 term();
 }
 }

- And the bug is????
Left Recursion Problem

- If we code up a left-recursive rule as-is, we get an infinite recursion.
- Non-solution: replace with a right-recursive rule

\[
expr ::= term + expr \mid term
\]

- Why isn’t this the right thing to do?
Left Recursion Solution

- Rewrite using right recursion and a new non-terminal
- Original: \(expr ::= expr + term \mid term \)
- New
 \[
 expr ::= term \ exptail \\
 \text{exptail ::= + term \ exptail \mid \varepsilon}
 \]
- Properties
 - No infinite recursion if coded up directly
 - Maintains left associatively (required)
Another Way to Look at This

- Observe that
 \[expr ::= expr + term | term \]
 generates the sequence
 \[(... ((term + term) + term) + ...) + term \]
- We can sugar the original rule to show this
 \[expr ::= term \{ + term \}* \]
- This leads directly to parser code
 - Just be sure to do the correct thing to handle associativity as the terms are parsed
Code for Expressions (1)

```c
// parse
// expr ::= term { + term }*
void expr() {
    term();
    while (next symbol is PLUS) {
        getNextToken();
        term()
    }
}
```

```c
// parse
// term ::= factor { * factor }*
void term() {
    factor();
    while (next symbol is TIMES) {
        getNextToken();
        factor()
    }
}
```
Code for Expressions (2)

// parse
// factor ::= int | id | (expr)
void factor() {
 switch(nextToken) {
 case INT:
 process int constant;
 getNextToken();
 break;

 case ID:
 process identifier;
 getNextToken();
 break;

 case LPAREN:
 getNextToken();
 expr();
 getNextToken();
 break;

 ...
 }
}
What About Indirect Left Recursion?

- A grammar might have a derivation that leads to a left recursion

\[A \Rightarrow \beta_1 \Rightarrow^* \beta_n \Rightarrow A \gamma \]

- There are systematic ways to factor such grammars
 - See any compiler or formal language book
Left Factoring

- If two rules for a non-terminal have right hand sides that begin with the same symbol, we can’t predict which one to use.
- Solution: Factor the common prefix into a separate production.
Left Factoring Example

- Original grammar

\[stmt ::= \text{if (} expr \text{) stmt} \]
\[| \text{if (} expr \text{) stmt else stmt} \]

- Factored grammar

\[stmt ::= \text{if (} expr \text{) stmt ifTail} \]
\[\text{ifTail ::= else stmt} | \varepsilon \]
Parsing if Statements

- But it’s easiest to just code up the “else matches closest if” rule directly

// parse
// if (expr) stmt [else stmt]
void ifStmt() {
 getNextToken();
 getNextToken();
 expr();
 getNextToken();
 stmt();
 if (next symbol is ELSE) {
 getNextToken();
 stmt();
 }
}
Another Lookahead Problem

- In languages like FORTRAN, parentheses are used for array subscripts.
- A FORTRAN grammar includes something like
 \[
 \text{factor} ::= \text{id} (\text{subscripts}) \mid \text{id} (\text{arguments}) \mid \ldots
 \]
- When the parser sees "\text{id} (\text{"}, how can it decide whether this begins an array element reference or a function call?
Two Ways to Handle $id(\ ?\)$

- Use the type of id to decide
 - Requires declare-before-use restriction if we want to parse in 1 pass
- Use a covering grammar

 \[
 factor ::= id(\ commaSeparatedList\) | \ldots
 \]

 and fix later when more information is available
Top-Down Parsing Concluded

- Works with a smaller set of grammars than bottom-up, but can be done for most sensible programming language constructs.
- If you need to write a quick-n-dirty parser, recursive descent is often the method of choice.
Parsing Concluded

- That’s it!
- On to the rest of the compiler
- Coming attractions
 - Intermediate representations (ASTs etc.)
 - Semantic analysis (including type checking)
 - Symbol tables
 - & more…