
10/11/2011 © 2002-11 Hal Perkins & UW CSE E-1

CSE P 501 – Compilers

LR Parser Construction

Hal Perkins

Autumn 2011

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-2

Agenda

 LR(0) state construction

 FIRST, FOLLOW, and nullable

 Variations: SLR, LR(1), LALR

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-3

LR State Machine

 Idea: Build a DFA that recognizes
handles

 Language generated by a CFG is generally
not regular, but

 Language of handles for a CFG is regular

 So a DFA can be used to recognize handles

 Parser reduces when DFA accepts

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-4

Prefixes, Handles, &c (review)

 If S is the start symbol of a grammar G,

 If S =>*  then  is a sentential form of G

  is a viable prefix of G if there is some derivation
S =>*rm Aw =>*rm w
and  is a prefix of .

 The occurrence of  in w is a handle of w

 An item is a marked production (a . at some
position in the right hand side)

 [A ::= . X Y] [A ::= X . Y] [A ::= X Y .]

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-5

Building the LR(0) States

 Example grammar
 S’ ::= S $

 S ::= (L)

 S ::= x

 L ::= S

 L ::= L , S

 We add a production S’ with the original start
symbol followed by end of file ($)

 Question: What language does this grammar
generate?

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-6

Start of LR Parse

 Initially

 Stack is empty

 Input is the right hand side of S’, i.e., S $

 Initial configuration is [S’ ::= . S $]

 But, since position is just before S, we are
also just before anything that can be
derived from S

0. S’ ::= S $
1. S ::= (L)
2. S ::= x
3. L ::= S
4. L ::= L , S

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-7

 A state is just a set of items
 Start: an initial set of items

 Completion (or closure): additional productions
whose left hand side appears to the right of the
dot in some item already in the state

Initial state

S’ ::= . S $
S ::= . (L)
S ::= . x

start

completion

0. S’ ::= S $
1. S ::= (L)
2. S ::= x
3. L ::= S
4. L ::= L , S

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-8

 To shift past the x, add a new state with the
appropriate item(s)
 In this case, a single item; the closure adds nothing

 This state will lead to a reduction since no further shift is
possible

Shift Actions (1)

S’ ::= . S $
S ::= . (L)
S ::= . x

S ::= x .
x

0. S’ ::= S $
1. S ::= (L)
2. S ::= x
3. L ::= S
4. L ::= L , S

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-9

 If we shift past the (, we are at the beginning of L

 the closure adds all productions that start with L,
which requires adding all productions starting with S

Shift Actions (2)

S’ ::= . S $
S ::= . (L)
S ::= . x

S ::= (. L)
L ::= . L , S
L ::= . S
S ::= . (L)
S ::= . x

(

0. S’ ::= S $
1. S ::= (L)
2. S ::= x
3. L ::= S
4. L ::= L , S

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-10

 Once we reduce S, we’ll pop the rhs
from the stack exposing the first state.
Add a goto transition on S for this.

Goto Actions

S’ ::= . S $
S ::= . (L)
S ::= . x

S’ ::= S . $
S

0. S’ ::= S $
1. S ::= (L)
2. S ::= x
3. L ::= S
4. L ::= L , S

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-11

Basic Operations

 Closure (S)

 Adds all items implied by items already in S

 Goto (I, X)

 I is a set of items

 X is a grammar symbol (terminal or non-
terminal)

 Goto moves the dot past the symbol X in
all appropriate items in set I

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-12

Closure Algorithm

 Closure (S) =

 repeat

 for any item [A ::=  . X ] in S

 for all productions X ::= 

 add [X ::= . ] to S

 until S does not change

 return S

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-13

Goto Algorithm

 Goto (I, X) =

 set new to the empty set

 for each item [A ::=  . X ] in I

 add [A ::=  X . ] to new

 return Closure (new)

 This may create a new state, or may return an
existing one

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-14

LR(0) Construction

 First, augment the grammar with an
extra start production S’ ::= S $

 Let T be the set of states

 Let E be the set of edges

 Initialize T to Closure ([S’ ::= . S $])

 Initialize E to empty

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-15

LR(0) Construction Algorithm

repeat

 for each state I in T

 for each item [A ::=  . X ] in I

 Let new be Goto (I, X)

 Add new to T if not present

 Add I new to E if not present

until E and T do not change in this iteration

 Footnote: For symbol $, we don’t compute goto (I, $); instead,

we make this an accept action.

X

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-16

Example: States for

0. S’ ::= S $
1. S ::= (L)
2. S ::= x
3. L ::= S
4. L ::= L , S

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-17

Building the Parse Tables (1)

 For each edge I J

 if X is a terminal, put sj in column X, row I
of the action table (shift to state j)

 If X is a non-terminal, put gj in column X,
row I of the goto table

x

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-18

Building the Parse Tables (2)

 For each state I containing an item
[S’ ::= S . $], put accept in column $ of
row I

 Finally, for any state containing
[A ::=  .] put action rn in every column
of row I in the table, where n is the
production number

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-19

Example: Tables for

0. S’ ::= S $
1. S ::= (L)
2. S ::= x
3. L ::= S
4. L ::= L , S

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-20

Where Do We Stand?

 We have built the LR(0) state machine
and parser tables

 No lookahead yet

 Different variations of LR parsers add
lookahead information, but basic idea of
states, closures, and edges remains the
same

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-21

A Grammar that is not LR(0)

 Build the state machine and parse
tables for a simple expression grammar

 S ::= E $

 E ::= T + E

 E ::= T

 T ::= x

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-22

LR(0) Parser for

0. S ::= E $
1. E ::= T + E
2. E ::= T
3. T ::= x

S ::= . E $
E ::= . T + E
E ::= . T
T ::= . x

T ::= x .

S ::= E . $

E ::= T . + E
E ::= T .

E ::= T + . E
E ::= . T + E
E ::= . T
T ::= . x

E ::= T + E.

1 2

3

4 5

6

E

T

+ T
x

E

x + $ E T

1 s5 g2 G3

2 acc

3 r2 s4,r2 r2

4 s5 g6 G3

5 r3 r3 r3

6 r1 r1 r1

 State 3 is has two possible
actions on +:

 shift 4 or reduce 2

  Grammar is not LR(0)

x

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-23

SLR Parsers

 Idea: Use information about what can follow a
non-terminal to decide if we should perform a
reduction

 Easiest form is SLR – Simple LR

 We need to be able to compute FOLLOW(A) –
the set of symbols that can follow A in any
possible derivation
 i.e., t is in FOLLOW(A) if any derivation contains At

 To compute this, we need to compute FIRST() for
strings  that can follow A

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-24

Calculating FIRST()

 Sounds easy… If  = X Y Z , then
FIRST() is FIRST(X), right?

 But what if we have the rule X ::= ε?

 In that case, FIRST() includes anything
that can follow an X – i.e. FOLLOW(X)

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-25

FIRST, FOLLOW, and nullable

 nullable(X) is true if X can derive the empty
string

 Given a string  of terminals and non-
terminals, FIRST() is the set of terminals
that can begin strings derived from .

 FOLLOW(X) is the set of terminals that can
immediately follow X in some derivation

 All three of these are computed together

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-26

Computing FIRST, FOLLOW,
and nullable (1)

 Initialization

 set FIRST and FOLLOW to be empty sets

 set nullable(X) false for all non-terminals X

 set FIRST[a] to a for all terminal symbols a

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-27

Computing FIRST, FOLLOW,
and nullable (2)
repeat
 for each production X := Y1 Y2 … Yk

 if Y1 … Yk are all nullable (or if k = 0)
 set nullable[X] = true
 for each i from 1 to k and each j from i +1 to k
 if Y1 … Yi-1 are all nullable (or if i = 1)
 add FIRST[Yi] to FIRST[X]
 if Yi+1 … Yk are all nullable (or if i = k)
 add FOLLOW[X] to FOLLOW[Yi]
 if Yi+1 … Yj-1 are all nullable (or if i+1=j)
 add FIRST[Yj] to FOLLOW[Yi]
Until FIRST, FOLLOW, and nullable do not change

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-28

Example

 Grammar

Z ::= d

Z ::= X Y Z

Y ::= ε

Y ::= c

X ::= Y

X ::= a

 nullable FIRST FOLLOW

X

Y

Z

10/11/2011 © 2002-09 Hal Perkins & UW CSE E-29

LR(0) Reduce Actions

 In an LR(0) parser, if a state contains a
reduction, it is unconditional regardless
of the next input symbol

 Algorithm:

 Initialize R to empty

 for each state I in T

 for each item [A ::=  .] in I

 add (I, A ::= ) to R

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-30

SLR Construction

 This is identical to LR(0) – states, etc., except
for the calculation of reduce actions

 Algorithm:

 Initialize R to empty

 for each state I in T

 for each item [A ::=  .] in I

 for each terminal a in FOLLOW(A)

 add (I, a, A ::= ) to R
 i.e., reduce  to A in state I only on lookahead a

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-31

SLR Parser for

0. S ::= E $
1. E ::= T + E
2. E ::= T
3. T ::= x

S ::= . E $
E ::= . T + E
E ::= . T
T ::= . x

T ::= x .

S ::= E . $

E ::= T . + E
E ::= T .

E ::= T + . E
E ::= . T + E
E ::= . T
T ::= . x

E ::= T + E.

1 2

3

4
5

6

E

T

+ T

x

E

x + $ E T

1 s5 g2 g3

2 acc

3 r2 s4,r2 r2

4 s5 g6 g3

5 r3 r3 r3

6 r1 r1 r1

x

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-32

On To LR(1)

 Many practical grammars are SLR

 LR(1) is more powerful yet

 Similar construction, but notion of an
item is more complex, incorporating
lookahead information

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-33

LR(1) Items

 An LR(1) item [A ::=  . , a] is
 A grammar production (A ::= )

 A right hand side position (the dot)

 A lookahead symbol (a)

 Idea: This item indicates that  is the
top of the stack and the next input is
derivable from a.

 Full construction: see the book

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-34

LR(1) Tradeoffs

 LR(1)

 Pro: extremely precise; largest set of
grammars / languages

 Con: potentially very large parse tables
with many states

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-35

LALR(1)

 Variation of LR(1), but merge any two
states that differ only in lookahead

 Example: these two would be merged

 [A ::= x . , a]

 [A ::= x . , b]

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-36

LALR(1) vs LR(1)

 LALR(1) tables can have many fewer
states than LR(1)

 LALR(1) may have reduce conflicts
where LR(1) would not (but in practice
this doesn’t happen often)

 Most practical bottom-up parser tools
are LALR(1) (e.g., yacc, bison, CUP)

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-37

Language Heirarchies

ambiguous
grammars

unambiguous grammars

LR(k)

LR(1)

LALR(1)

SLR

LR(0)
LL(0)

LL(1)

LL(k)

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-38

Coming Attractions

 LL(k) Parsing – Top-Down

 Recursive Descent Parsers

 What to do if you need a parser in a hurry

