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Agenda 

 LR(0) state construction 

 FIRST, FOLLOW, and nullable 

 Variations: SLR, LR(1), LALR 
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LR State Machine 

 Idea: Build a DFA that recognizes 
handles  

 Language generated by a CFG is generally 
not regular, but 

 Language of handles for a CFG is regular 

 So a DFA can be used to recognize handles 

 Parser reduces when DFA accepts 
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Prefixes, Handles, &c (review) 

 If S is the start symbol of a grammar G, 

 If S =>*  then  is a sentential form of G 

  is a viable prefix of G if there is some derivation 
S =>*rm Aw =>*rm w  
and  is a prefix of . 

 The occurrence of  in w is a handle of w 

 An item is a marked production (a . at some 
position in the right hand side) 

 [A ::= . X Y ]   [A ::= X . Y ]   [A ::= X Y . ]  
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Building the LR(0) States 

 Example grammar 
  S’ ::= S $ 

  S ::= ( L ) 

  S ::= x 

  L ::= S 

  L ::= L , S 

 We add a production S’ with the original start 
symbol followed by end of file ($) 

 Question: What language does this grammar 
generate? 
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Start of LR Parse 

 Initially 

 Stack is empty 

 Input is the right hand side of S’, i.e., S $ 

 Initial configuration is [S’ ::= . S $] 

 But, since position is just before S, we are 
also just before anything that can be 
derived from S 

0.  S’ ::= S $ 
1.  S ::= ( L ) 
2.  S ::= x 
3.  L ::= S 
4.  L ::= L , S 
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 A state is just a set of items 
 Start: an initial set of items 

 Completion (or closure): additional productions 
whose left hand side appears to the right of the 
dot in some item already in the state  

Initial state 

S’ ::= . S $ 
S ::= . ( L ) 
S ::= . x 

start 

completion 

0.  S’ ::= S $ 
1.  S ::= ( L ) 
2.  S ::= x 
3.  L ::= S 
4.  L ::= L , S 
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 To shift past the x, add a new state with the 
appropriate item(s) 
 In this case, a single item; the closure adds nothing 

 This state will lead to a reduction since no further shift is 
possible 

Shift Actions (1) 

S’ ::= . S $ 
S ::= . ( L ) 
S ::= . x 

S ::= x . 
x 

0.  S’ ::= S $ 
1.  S ::= ( L ) 
2.  S ::= x 
3.  L ::= S 
4.  L ::= L , S 
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 If we shift past the ( , we are at the beginning of L 

 the closure adds all productions that start with L, 
which requires adding all productions starting with S 

Shift Actions (2) 

S’ ::= . S $ 
S ::= . ( L ) 
S ::= . x  

S ::= ( . L ) 
L ::= . L , S 
L ::= . S  
S ::= . ( L )  
S ::= . x   

( 

0.  S’ ::= S $ 
1.  S ::= ( L ) 
2.  S ::= x 
3.  L ::= S 
4.  L ::= L , S 
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 Once we reduce S, we’ll pop the rhs 
from the stack exposing the first state.  
Add a goto transition on S  for this. 

Goto Actions 

S’ ::= . S $ 
S ::= . ( L ) 
S ::= . x 

S’ ::= S . $ 
S 

0.  S’ ::= S $ 
1.  S ::= ( L ) 
2.  S ::= x 
3.  L ::= S 
4.  L ::= L , S 
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Basic Operations 

 Closure (S ) 

 Adds all items implied by items already in S 

 Goto (I, X ) 

 I is a set of items 

 X is a grammar symbol (terminal or non-
terminal) 

 Goto moves the dot past the symbol X  in 
all appropriate items in set I 
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Closure Algorithm 

 Closure (S ) = 

 repeat 

   for any item [A ::=  . X ] in S 

      for all productions X ::=  

   add [X ::= . ] to S 

 until S  does not change 

 return S 
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Goto Algorithm 

 Goto (I, X ) = 

  set new  to the empty set  

  for each item [A ::=  . X  ] in I 

   add [A ::=  X .  ] to new 

  return Closure (new ) 
 

 This may create a new state, or may return an 
existing one 
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LR(0) Construction 

 First, augment the grammar with an 
extra start production S’ ::= S $ 

 Let T  be the set of states 

 Let E  be the set of edges 

 Initialize T  to Closure ( [S’ ::= . S $] ) 

 Initialize E  to empty 
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LR(0) Construction Algorithm 

repeat 

 for each state I  in T  

  for each item [A ::=  . X  ] in I 

     Let new  be Goto ( I, X ) 

     Add new  to T  if not present 

     Add I     new  to E  if not present 

until E  and T  do not change in this iteration 

 
 Footnote: For symbol $, we don’t compute goto (I, $); instead, 

we make this an accept action. 
 

X 
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Example: States for 

0.  S’ ::= S $ 
1.  S ::= ( L ) 
2.  S ::= x 
3.  L ::= S 
4.  L ::= L , S 
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Building the Parse Tables (1) 

 For each edge I      J   

 if X is a terminal, put sj  in column X, row I  
of the action table (shift to state j ) 

 If X is a non-terminal, put gj  in column X, 
row I of the goto table 

  

 

x 
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Building the Parse Tables (2) 

 For each state I  containing an item  
[S’  ::= S . $], put accept in column $ of 
row I   

 Finally, for any state containing  
[A ::=  .] put action rn in every column 
of row I in the table, where n is the 
production number 
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Example: Tables for 

0.  S’ ::= S $ 
1.  S ::= ( L ) 
2.  S ::= x 
3.  L ::= S 
4.  L ::= L , S 
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Where Do We Stand? 

 We have built the LR(0) state machine 
and parser tables 

 No lookahead yet 

 Different variations of LR parsers add 
lookahead information, but basic idea of 
states, closures, and edges remains the 
same 
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A Grammar that is not LR(0) 

 Build the state machine and parse 
tables for a simple expression grammar 

 S ::= E $ 

 E ::= T + E 

 E ::= T 

 T ::= x 
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LR(0) Parser for 

0.  S ::= E $ 
1.  E ::= T + E 
2.  E ::= T 
3.  T ::= x 

S ::= . E $ 
E ::= . T + E 
E ::= . T 
T ::= . x 

T ::= x . 

S ::= E . $ 

E ::= T . + E 
E ::= T . 

E ::= T + . E 
E ::= . T + E 
E ::= . T 
T ::= . x 

E ::= T + E. 

1 2 

3 

4 5 

6 

E 

T 

+ T 
x 

E 

x + $ E T 

1 s5 g2 G3 

2 acc 

3 r2 s4,r2 r2 

4 s5 g6 G3 

5 r3 r3 r3 

6 r1 r1 r1 

 State 3 is has two possible 
actions on +: 

 shift 4 or reduce 2 

  Grammar is not LR(0) 

x 
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SLR Parsers 

 Idea: Use information about what can follow a 
non-terminal to decide if we should perform a 
reduction 

 Easiest form is SLR – Simple LR 

 We need to be able to compute FOLLOW(A ) – 
the set of symbols that can follow A in any 
possible derivation 
 i.e., t is in FOLLOW(A) if any derivation contains At 

 To compute this, we need to compute FIRST() for 
strings  that can follow A 
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Calculating FIRST() 

 Sounds easy… If  = X Y Z , then 
FIRST() is FIRST(X ), right? 

 

 

 

 But what if we have the rule X ::= ε? 

 In that case, FIRST() includes anything 
that can follow an X – i.e. FOLLOW(X ) 
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FIRST, FOLLOW, and nullable 

 nullable(X ) is true if X can derive the empty 
string 

 Given a string  of terminals and non-
terminals, FIRST() is the set of terminals 
that can begin strings derived from . 

 FOLLOW(X ) is the set of terminals that can 
immediately follow X  in some derivation 

 All three of these are computed together 



10/11/2011 © 2002-11 Hal Perkins & UW CSE E-26 

Computing FIRST, FOLLOW, 
and nullable (1) 

 Initialization 

 set FIRST and FOLLOW to be empty sets 

 set nullable(X) false for all non-terminals X 

 set FIRST[a] to a for all terminal symbols a 
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Computing FIRST, FOLLOW, 
and nullable (2) 
repeat 
 for each production X := Y1 Y2 … Yk 

  if Y1 … Yk are all nullable (or if k = 0) 
     set nullable[X ] = true 
  for each i  from 1 to k and each j  from i +1 to k 
     if Y1 … Yi-1 are all nullable (or if i = 1) 
   add FIRST[Yi ] to FIRST[X ] 
     if Yi+1 … Yk are all nullable (or if i = k ) 
   add FOLLOW[X ] to FOLLOW[Yi ] 
     if Yi+1 … Yj-1 are all nullable (or if i+1=j) 
   add FIRST[Yj ] to FOLLOW[Yi ] 
Until FIRST, FOLLOW, and nullable do not change 
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Example 

 Grammar 

Z ::= d 

Z ::= X Y Z 

Y ::= ε 

Y ::= c 

X ::= Y 

X ::= a 

   nullable   FIRST     FOLLOW 

 

X 

 

 

Y 

 

 

Z 
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LR(0) Reduce Actions 

 In an LR(0) parser, if a state contains a 
reduction, it is unconditional regardless 
of the next input symbol 

 Algorithm: 

  Initialize R  to empty 

  for each state I  in T  

     for each item [A ::=  .] in I  

   add (I, A ::= ) to R  
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SLR Construction 

 This is identical to LR(0) – states, etc., except 
for the calculation of reduce actions 

 Algorithm: 

  Initialize R  to empty 

  for each state I  in T  

     for each item [A ::=  .] in I 

        for each terminal a in FOLLOW(A )  

   add (I, a, A ::= ) to R  
 i.e., reduce  to A in state I  only on lookahead a 
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SLR Parser for 

0.  S ::= E $ 
1.  E ::= T + E 
2.  E ::= T 
3.  T ::= x 

S ::= . E $ 
E ::= . T + E 
E ::= . T 
T ::= . x 

T ::= x . 

S ::= E . $ 

E ::= T . + E 
E ::= T . 

E ::= T + . E 
E ::= . T + E 
E ::= . T 
T ::= . x 

E ::= T + E. 

1 2 

3 

4 
5 

6 

E 

T 

+ T 

x 

E 

x + $ E T 

1 s5 g2 g3 

2 acc 

3 r2 s4,r2 r2 

4 s5 g6 g3 

5 r3 r3 r3 

6 r1 r1 r1 

x 
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On To LR(1) 

 Many practical grammars are SLR 

 LR(1) is more powerful yet 

 Similar construction, but notion of an 
item is more complex, incorporating 
lookahead information 
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LR(1) Items 

 An LR(1) item [A ::=  . , a] is 
 A grammar production (A ::= ) 

 A right hand side position (the dot) 

 A lookahead symbol (a) 

 Idea: This item indicates that  is the 
top of the stack and the next input is 
derivable from a. 

 Full construction: see the book 
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LR(1) Tradeoffs 

 LR(1) 

 Pro: extremely precise; largest set of 
grammars / languages 

 Con: potentially very large parse tables 
with many states 
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LALR(1) 

 Variation of LR(1), but merge any two 
states that differ only in lookahead 

 Example: these two would be merged 

 [A ::= x . , a] 

 [A ::= x . , b] 
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LALR(1) vs LR(1) 

 LALR(1) tables can have many fewer 
states than LR(1) 

 LALR(1) may have reduce conflicts 
where LR(1) would not (but in practice 
this doesn’t happen often) 

 Most practical bottom-up parser tools 
are LALR(1) (e.g., yacc, bison, CUP) 
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Language Heirarchies 

ambiguous 
grammars 

unambiguous grammars 

LR(k) 

LR(1) 

LALR(1) 

SLR 

LR(0) 
LL(0) 

LL(1) 

LL(k) 
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Coming Attractions 

 LL(k) Parsing – Top-Down 

 Recursive Descent Parsers 

 What to do if you need a parser in a hurry 


