!'_ CSE P 501 — Compilers

LR Parser Construction
Hal Perkins
Autumn 2011

10/11/2011 © 2002-11 Hal Perkins & UW CSE

E-1

i Agenda

= LR(0) state construction
= FIRST, FOLLOW, and nullable
= Variations: SLR, LR(1), LALR

10/11/2011 © 2002-11 Hal Perkins & UW CSE

E-2

i LR State Machine

= Idea: Build a DFA that recognizes
handles

= Language generated by a CFG is generally
not regular, but

= Language of handles for a CFG is regular
= S0 a DFA can be used to recognize handles

= Parser reduces when DFA accepts

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-3

i Prefixes, Handles, &c (review)

= If S'is the start symbol of a grammar G,
s If S=>* o then o is a sentential form of G

= v IS a viable prefix of Gif there is some derivation
S =>*_ oaAwW =>*__ affw
and vy is a prefix of ap.

= The occurrence of B in afw is a handle of afw

= An /temis a marked production (a . at some
position in the right hand side)
s [Aii=. XY] [Aii=X.Y] [Ai=XY.]

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-4

i Building the LR(0) States

= Example grammar

§5::=5%
Si:=(L)
S:ii=X
L::=5
L::=L,5

= We add a production S’ with the original start
symbol followed by end of file ($)

= Question: What language does this grammar
generate?

10/11/2011 © 2002-11 Hal Perkins & UW CSE

E-5

0. §::=5%
1. S::=(L)
2. S5::=X
3. L::=5
4, L:=L, S

i Start of LR Parse

o InltlaIIy
= Stack is empty
« Input is the right hand side of 57 i.e., S'$%
=« Initial configurationis [$7::= . S $]
» But, since position is just before S, we are

also just before anything that can be
derived from S

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-6

0. §::=5%
1. S::=(L)
2. S:i=X
3. L::=5
4, L:=L, S

i Initial state

S/rr= 5$./start
S:=.(L).
Sii=.X ~

= A state is just a set of items
» Start: an initial set of items

= Completion (or closure): additional productions
whose left hand side appears to the right of the
dot in some item already in the state

T~ completion

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-7

0. §::= 5%
1. S::=(L)
Shift Actions (1) L %,5

S'ii=.5% y
G L) " Si=X.
S

(
. X

= To shift past the x, add a new state with the
appropriate item(s)
= In this case, a single item; the closure adds nothing

= This state will lead to a reduction since no further shift is
possible

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-8

0. g’.:=(5$)
S Shex
i Shift Actions (2) LS
S::=(.L)
Si=.5% (|L=.L,5
S:i=.(L) "Lo=05
Sii=.X S:=.(L)
S:'=.X

= If we shift past the (, we are at the beginning of L

= the closure adds all productions that start with L,
which requires adding all productions starting with S

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-9

0. §::=5%
1. S::=(L)
2. S5::=X
3. L::=5
4, L:=L, S

i Goto Actions

5% |
(L) 1 S'i=5.9%
. X

5/
S::
S

= Once we reduce S, we'll pop the rhs
from the stack exposing the first state.
Add a goto transition on S for this.

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-10

i Basic Operations

s Closure (S)
= Adds all items implied by items already in S

s Goto (1, X)
= /is a set of items

= Xis a grammar symbol (terminal or non-
terminal)

= Goto moves the dot past the symbol X in
all appropriate items in set 7

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-11

i Closure Algorithm

s Closure (S) =
repeat
foranyitem[A:i=a . XB]INS
for all productions X ::= vy
add [X::i=.y]to §
until S does not change
return S

10/11/2011 © 2002-11 Hal Perkins & UW CSE

E-12

i Goto Algorithm

s Goto([X) =
set new to the empty set
foreachitem[A:i=a. X B]in/
add [A ;= a X. B] to new
return Closure (new)

= This may create a new state, or may return an
existing one

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-13

i LR(0) Construction

= First, augment the grammar with an
extra start production §7::= 5%

= Let 7 be the set of states

= Let £ be the set of edges

= Initialize 7 to Closure ([S7::=. 5%])
= Initialize £ to empty

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-14

i LR(0) Construction Algorithm

repeat
foreach state 7 in 7
foreachitem [A:i=a . X B]in[
Let new be Goto(1, X)
Add new to T if not present
Add 72-new to E if not present
until £ and 7 do not change in this iteration

= Footnote: For symbol $, we don‘t compute gotfo (1, $); instead,
we make this an accept action.

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-15

nn
A

0. §::=

1. S::=(L)
2. S:i=X

3. L:=5
4, L =L, S

‘L Example: States for

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-16

i Building the Parse Tables (1)

= For each edge 7 — J

=« if X'is a terminal, put s; in column X, row 7
of the action table (shift to state ;)

« If X is @ non-terminal, put g; in column X,
row 7 of the goto table

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-17

i Building the Parse Tables (2)

= For each state / containing an item
[S7 .= 5. $], put acceptin column $ of
row /

= Finally, for any state containing
[A::=v.] put action rn7in every column
of row 7in the table, where nis the
production number

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-18

0. ::=5%
1. S::=(L)
2. S:i=X
3. L:=5
4, L =L, S

‘L Example: Tables for

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-19

i Where Do We Stand?

= We have built the LR(0) state machine
and parser tables
= No lookahead yet

= Different variations of LR parsers add
lookahead information, but basic idea of
states, closures, and edges remains the
same

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-20

i A Grammar that is not LR(0)

= Build the state machine and parse

tables for a simple expression grammar

10/11/2011

Sohmy

E$
T+ E
,

X

© 2002-11 Hal Perkins & UW CSE

E-21

LR(0) Parser for

@ @
S::=.E$ E:S::=E.$ 1
E::=.T+E 2
E =.T T@ 3
Ti=.X »E::=T.+E 4
E::=
Y 5
X n T
® | @ | °
Ti=X.le X E::=T+.E
@ E::=.T+E
Eu=T+E 0t Ei=-T
T:i=.X

0. S::=F$%

1. £x:=T+ E

2. E::=T

3. T:u=X
X + $ E T
s5 g2 G3

acc

r2 s4,r2 r2
s5 g6 G3
r3 r3 r3
rl rl rl

= State 3 is has two possible
actions on +:

shift 4 or reduce 2

= .. Grammar is not LR(0)

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-22

i SLR Parsers

s Idea: Use information about what can follow a
non-terminal to decide if we should perform a
reduction

= Easiest form is SLR — Simple LR

= We need to be able to compute FOLLOW(A) —
the set of symbols that can follow A in any
possible derivation
= i.e., tisin FOLLOW(A) if any derivation contains At

= To compute this, we need to compute FIRST(y) for
strings vy that can follow A

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-23

i Calculating FIRST(y)

= Sounds easy... If y = XY Z, then
FIRST(y) is FIRST(X), right?

= But what if we have the rule X ::= €?

= In that case, FIRST(y) includes anything
that can follow an X—i.e. FOLLOW(X)

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-24

i FIRST, FOLLOW, and nullable

= nullable(X) is true if X can derive the empty
string

= Given a string y of terminals and non-
terminals, FIRST(y) is the set of terminals
that can begin strings derived from v.

s FOLLOW(X) is the set of terminals that can
immediately follow X in some derivation

= All three of these are computed together

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-25

Computing FIRST, FOLLOW,
i and nullable (1)

= Initialization
set FIRST and FOLLOW to be empty sets
set nullable(X) false for all non-terminals X
set FIRST[a] to a for all terminal symbols a

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-26

Computing FIRST, FOLLOW,
i and nullable (2)

repeat
for each production X:= Y, ¥, ... %
if ;... ¥ are all nullable (or if k= 0)
set nullable[X'] = true
for each 7 from 1 to k and each 7 from /7 +1 to &
if ;... ¥, areall nullable (orif /= 1)
add FIRST[Y] to FIRST[X]
if ¥.,... ¥ areall nullable (orif /= k)
add FOLLOW[X] to FOLLOWTI ¥]
if ¥, ... ¥ are all nullable (or if i+1=j)
add FIRST[¥,] to FOLLOW[¥]
Until FIRST, FOLLOW, and nullable do not change

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-27

Example

= Grammar
Z.i=d
L= XYZ
Yii=€
Yii=C
Xio=Y
X.:=a

10/11/2011

nullable FIRST

© 2002-11 Hal Perkins & UW CSE

FOLLOW

E-28

i LR(0) Reduce Actions

= In an LR(0) parser, if a state contains a
reduction, it is unconditional regardless
of the next input symbol

= Algorithm:
Initialize R to empty
foreach state 7 in 7
foreachitem [A::=a .]in [
add ([, A::= o) to R

10/11/2011 © 2002-09 Hal Perkins & UW CSE E-29

i SLR Construction

= This is identical to LR(0) — states, etc., except
for the calculation of reduce actions

= Algorithm:
Initialize R to empty
foreach state 7 in 7
foreachitem[A::=a.]in [
for each terminal a in FOLLOW(A)
add (/,a, A::=a)to R
= i.e., reduce o to A in state /7 only on lookahead a

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-30

arser for

SLRP
=

WwN = o
—Ammwm
Il

E

S::=.ES$
E::=.T+E
E::=.T
T::=.X
® |
T::=X.
(6)
E::=T+ E.

10/11/2011

@ X + $ E T
: S - =E.$ 1 s5 g2 g3
@ 2 acc
3 s4 r2
»E::=T.+E 4 < g6 a3
E::=T.
vy 5 r3 r3
+ T 6 r1
(4)
E::=T+.E
E::=.T+E
E::=.T
T::=.X
© 2002-11 Hal Perkins & UW CSE E-31

i On To LR(1)

= Many practical grammars are SLR
= LR(1) is more powerful yet

= Similar construction, but notion of an
item is more complex, incorporating
lookahead information

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-32

i LR(1) Items

= AnLR(1) item [A::=a . B, a] is

= A grammar

oroduction (A ::= af)

= A right hand side position (the dot)

= A lookaheac

symbol (a)

= Idea: This item indicates that o is the
top of the stack and the next input is
derivable from Ba.

s Full construction: see the book

10/11/2011

© 2002-11 Hal Perkins & UW CSE E-33

i LR(1) Tradeoffs

= LR(1)
= Pro: extremely precise; largest set of
grammars / languages

= Con: potentially very large parse tables
with many states

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-34

i LALR(1)

= Variation of LR(1), but merge any two
states that differ only in lookahead
« Example: these two would be merged
[A::=Xx.,a]
[A::=Xx., D]

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-35

i LALR(1) vs LR(1)

= LALR(1) tables can have many fewer

states than LR(1)
= LALR(1) may have reduce conflic

(S

where LR(1) would not (but in practice

this doesn’t happen often)

= Most practical bottom-up parser tools
are LALR(1) (e.qg., yacc, bison, CUP)

10/11/2011 © 2002-11 Hal Perkins & UW CSE

E-36

i Language Heirarchies

unambiguous grammars ambiguous
grammars
/ AR) LR(K)

(" LL(1) LR(1)

LR(0)

. Y,

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-37

i Coming Attractions

= LL(k) Parsing — Top-Down
= Recursive Descent Parsers
= What to do if you need a parser in a hurry

10/11/2011 © 2002-11 Hal Perkins & UW CSE E-38

