Agenda

- LR Parsing
- Table-driven Parsers
- Parser States
- Shift-Reduce and Reduce-Reduce conflicts
LR(1) Parsing

- We’ll look at LR(1) parsers
- Left to right scan, Rightmost derivation, 1 symbol lookahead
- Almost all practical programming languages have an LR(1) grammar
- LALR(1), SLR(1), etc. – subsets of LR(1)
 - LALR(1) can parse most real languages, is more compact, and is used by YACC/Bison/etc.
Bottom-Up Parsing

- Idea: Read the input left to right
- Whenever we’ve matched the right hand side of a production, reduce it to the appropriate non-terminal and add that non-terminal to the parse tree
- The upper edge of this partial parse tree is known as the *frontier*
Example

Grammar

\[S ::= a A B e \]
\[A ::= A b c \mid b \]
\[B ::= d \]

Bottom-up Parse

a b b c d e
Details

- The bottom-up parser reconstructs a reverse rightmost derivation.
- Given the rightmost derivation:
 \[S \Rightarrow \beta_1 \Rightarrow \beta_2 \Rightarrow \ldots \Rightarrow \beta_{n-2} \Rightarrow \beta_{n-1} \Rightarrow \beta_n = w \]
 the parser will first discover \(\beta_{n-1} \Rightarrow \beta_n \), then \(\beta_{n-2} \Rightarrow \beta_{n-1} \), etc.
- Parsing terminates when:
 - \(\beta_1 \) reduced to \(S \) (start symbol, success), or
 - No match can be found (syntax error)
How Do We Parse with This?

- Key: given what we’ve already seen and the next input symbol, decide what to do.
- Choices:
 - Perform a reduction
 - Look ahead further
- Can reduce $A \Rightarrow \beta$ if both of these hold:
 - $A \Rightarrow \beta$ is a valid production
 - $A \Rightarrow \beta$ is a step in this rightmost derivation
- This is known as a *shift-reduce* parser
Sentential Forms

- If \(S \Rightarrow^* \alpha \), the string \(\alpha \) is called a sentential form of the grammar.

- In the derivation:
 \(S \Rightarrow \beta_1 \Rightarrow \beta_2 \Rightarrow \ldots \Rightarrow \beta_{n-2} \Rightarrow \beta_{n-1} \Rightarrow \beta_n = w \)
 Each of the \(\beta_i \) are sentential forms.

- A sentential form in a rightmost derivation is called a right-sentential form (similarly for leftmost and left-sentential forms).
Handles

Informally, a substring of the tree frontier that matches the right side of a production

- Even if $A::=\beta$ is a production, β is a handle only if it matches the frontier at a point where $A::=\beta$ was used in the derivation

- β may appear in many other places in the frontier without being a handle for that particular production
Handles (cont.)

Formally, a *handle* of a right-sentential form γ is a production $A ::= \beta$ and a position in γ where β may be replaced by A to produce the previous right-sentential form in the rightmost derivation of γ.
Handle Examples

- In the derivation:
 - $S \Rightarrow aABe \Rightarrow aAde \Rightarrow \underline{aAbcde} \Rightarrow abbcde$
 - $abbcde$ is a right sentential form whose handle is $A::=b$ at position 2
 - $aAbcde$ is a right sentential form whose handle is $A::=Abc$ at position 4
 - Note: some books take the left of the match as the position
Implementing Shift-Reduce Parsers

- Key Data structures
 - A stack holding the frontier of the tree
 - A string with the remaining input
Shift-Reduce Parser Operations

- **Reduce** – if the top of the stack is the right side of a handle $A ::= \beta$, pop the right side β and push the left side A.
- **Shift** – push the next input symbol onto the stack
- **Accept** – announce success
- **Error** – syntax error discovered
Shift-Reduce Example

Stack	Input	Action
$ | abbcde$ | shift
$ | abbcde$ | shift
$ | abbcde$ | reduce
$ | abbcde$ | shift
$ | abbcde$ | reduce
$ | abbcde$ | shift
$ | abbcde$ | reduce
$ | abbcde$ | shift
$ | abbcde$ | reduce
$ | abbcde$ | shift
$ | abbcde$ | reduce
S $
How Do We Automate This?

- **Def. Viable prefix** – a prefix of a right-sentential form that can appear on the stack of the shift-reduce parser
 - Equivalent: a prefix of a right-sentential form that does not continue past the rightmost handle of that sentential form

- **Idea:** Construct a DFA to recognize viable prefixes given the stack and remaining input
 - Perform reductions when we recognize them
DFA for prefixes of

\[S ::= aABe \]
\[A ::= Abc | b \]
\[B ::= d \]
Trace

Stack
$$_$
s
$s a$
$s a b$
$s a A$
$s a A b$
$s a A b c$
$s a A c$
$s a A d$
$s a A b$
$s a A b c e$
$s e$

Input
abbccd e$
$b b c d e$
$b c d e$
$b c d e$
$c d e$
e
e
e
e
e

$S ::= a A B e$
$A ::= A b c | b$
$B ::= d$

Diagram:

Start

1 -> 2
2 -> 3
3 -> 4
4 -> 5
5 -> 6
6 -> 7
7 -> 8
8 -> 9

Accept

s
a
b
d
e
$S ::= a A B e$
$A ::= A b c$
$B ::= d$
Observations

- Way too much backtracking
 - We want the parser to run in time proportional to the length of the input
- Where the heck did this DFA come from anyway?
 - From the underlying grammar
 - We’ll defer construction details for now
Avoiding DFA Rescanning

- Observation: after a reduction, the contents of the stack are the same as before except for the new non-terminal on top
 - :. Scanning the stack will take us through the same transitions as before until the last one
 - :. If we record state numbers on the stack, we can go directly to the appropriate state when we pop the right hand side of a production from the stack
Stack

- Change the stack to contain pairs of states and symbols from the grammar $s_0 \ X_1 \ S_1 \ X_2 \ S_2 \ \ldots \ X_n \ S_n$
 - State s_0 represents the accept state
 - (Not always added – depends on particular presentation)

Observation: in an actual parser, only the state numbers need to be pushed, since they implicitly contain the symbol information, but for explanations, it’s clearer to use both.
Encoding the DFA in a Table

- A shift-reduce parser’s DFA can be encoded in two tables
 - One row for each state
 - \textit{action} table encodes what to do given the current state and the next input symbol
 - \textit{goto} table encodes the transitions to take after a reduction
Actions (1)

- Given the current state and input symbol, the main possible actions are:
 - \(s_i \) – shift the input symbol and state \(i \) onto the stack (i.e., shift and move to state \(i \))
 - \(r_j \) – reduce using grammar production \(j \)
 - The production number tells us how many \(<\text{symb}, \text{state}>\) pairs to pop off the stack
Actions (2)

- Other possible *action* table entries
 - *accept*
 - *blank* – no transition – syntax error
 - A LR parser will detect an error as soon as possible on a left-to-right scan
 - A real compiler needs to produce an error message, recover, and continue parsing when this happens
Goto

- When a reduction is performed, \(<\text{symbol}, \text{state}>\) pairs are popped from the stack revealing a state \textit{uncovered}_s on the top of the stack.
- \texttt{goto[uncovered}_s, A\texttt{]} is the new state to push on the stack when reducing production \(A ::= \beta\) (after popping \(\beta\) and finding state \textit{uncovered}_s on top).
Reminder: DFA for

\[S ::= aABe \]
\[A ::= Abc \mid b \]
\[B ::= d \]
LR Parse Table for

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>$</th>
<th>goto</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>s2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>acc</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>s4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>s6</td>
<td>s5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>r3</td>
<td>r3</td>
<td>r3</td>
<td>r3</td>
<td>r3</td>
<td>r3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>r4</td>
<td>r4</td>
<td>r4</td>
<td>r4</td>
<td>r4</td>
<td>r4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>s7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>r2</td>
<td>r2</td>
<td>r2</td>
<td>r2</td>
<td>r2</td>
<td>r2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>s9</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>r1</td>
<td>r1</td>
<td>r1</td>
<td>r1</td>
<td>r1</td>
<td>r1</td>
<td></td>
</tr>
</tbody>
</table>

1. $S ::= aABe$
2. $A ::= Abc$
3. $A ::= b$
4. $B ::= d$
LR Parsing Algorithm (1)

```java
word = scanner.getToken();
while (true) {
    s = top of stack;
    if (action[s, word] = s/) {
        push word; push / (state);
        word = scanner.getToken();
    } else if (action[s, word] = r/) {
        pop 2 * length of right side of
        production j (2*|β|);
        uncovered_s = top of stack;
        push left side A of production j;
        push state goto[uncovered_s, A];
    }
    
    } else if (action[s, word] = accept) {
        return;
    } else {
        // no entry in action table
        report syntax error;
        halt or attempt recovery;
    }
```
Example

1. \(S ::= a\bar{A}Be \)
2. \(A ::= \bar{A}bc \)
3. \(A ::= b \)
4. \(B ::= d \)

Stack
\[
\begin{align*}
&\text{1} \\
&\text{12} \\
&\text{1264} \\
&\text{12A3} \\
&\text{12A366} \\
&\text{12A356c7} \\
&\text{12A3} \\
&\text{12A3d5} \\
&\text{12A38} \\
&\text{12A358} \\
&\text{15}
\end{align*}
\]

Input: \text{abcde}$

\[
\text{ab} \quad \text{bc} \quad \text{cd} \quad \text{de} \quad \text{e} \quad \$
\]

<table>
<thead>
<tr>
<th>\text{action}</th>
<th>\text{goto}</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>S</td>
</tr>
<tr>
<td>b</td>
<td>A</td>
</tr>
<tr>
<td>c</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>s</th>
<th>action</th>
<th>goto</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>s2</td>
<td>ac</td>
</tr>
<tr>
<td>2</td>
<td>s4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>s6</td>
<td>s5</td>
</tr>
<tr>
<td>4</td>
<td>r3</td>
<td>r3</td>
</tr>
<tr>
<td>5</td>
<td>r4</td>
<td>r4</td>
</tr>
<tr>
<td>6</td>
<td>s7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>r2</td>
<td>r2</td>
</tr>
<tr>
<td>8</td>
<td>s9</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>r1</td>
<td>r1</td>
</tr>
</tbody>
</table>
LR States

- Idea is that each state encodes
 - The set of all possible productions that we could be looking at, given the current state of the parse, and
 - *Where* we are in the right hand side of each of those productions
Items

- An **item** is a production with a dot in the right hand side

- Example: Items for production $A ::= XY$

 $\Rightarrow A ::= .XY$

 $\Rightarrow A ::= X.Y$

 $A ::= XY.$

- Idea: The dot represents a position in the production
\[S ::= aABe \]
\[A ::= Abc | b \]
\[B ::= d \]

DFA for

[Diagram with states and transitions labeled with production rules.]
Problems with Grammars

- Grammars can cause problems when constructing an LR parser
 - Shift-reduce conflicts
 - Reduce-reduce conflicts
Shift-Reduce Conflicts

- Situation: both a shift and a reduce are possible at a given point in the parse (equivalently: in a particular state of the DFA)
- Classic example: if-else statement
 \[S ::= \text{ifthen } S \mid \text{ifthen } S \text{ else } S \]
Parser States for

1. \(S ::= \) ifthen \(S \)
2. \(S ::= \) ifthen \(S \) else \(S \)

- State 3 has a shift-reduce conflict
 - Can shift past else into state 4 (s4)
 - Can reduce (r1) \(S ::= \) ifthen \(S \)

(Note: other \(S ::= \) ifthen items not included in states 2-4 to save space)
Solving Shift-Reduce Conflicts

- Fix the grammar
 - Done in Java reference grammar, others
- Use a parse tool with a “longest match” rule – i.e., if there is a conflict, choose to shift instead of reduce
 - Does exactly what we want for if-else case
 - Guideline: a few shift-reduce conflicts are fine, but be sure they do what you want
Reduce-Reduce Conflicts

- Situation: two different reductions are possible in a given state
- Contrived example

 \[S ::= A \]

 \[S ::= B \]

 \[A ::= x \]

 \[B ::= x \]
Parser States for

1. $S ::= A$
2. $S ::= B$
3. $A ::= x$
4. $B ::= x$

- State 2 has a reduce-reduce conflict ($r3, r4$)
Handling Reduce-Reduce Conflicts

- These normally indicate a serious problem with the grammar.
- Fixes
 - Use a different kind of parser generator that takes lookahead information into account when constructing the states (LR(1) instead of SLR(1) for example)
 - Most practical tools use this information
 - Fix the grammar
Another Reduce-Reduce Conflict

- Suppose the grammar separates arithmetic and boolean expressions

 \[\text{expr ::= aexp | bexp} \]

 \[- \text{aexp ::= aexp * aident | aident} \]

 \[- \text{bexp ::= bexp && bident | bident} \]

 \[- \text{aident ::= id} \]

 \[- \text{bident ::= id} \]

- This will create a reduce-reduce conflict
Covering Grammars

- A solution is to merge aident and bident into a single non-terminal (or use id in place of aident and bident everywhere they appear)

- This is a covering grammar
 - Includes some programs that are not generated by the original grammar
 - Use the type checker or other static semantic analysis to weed out illegal programs later
Coming Attractions

- Constructing LR tables
 - We’ll present a simple version (SLR(0)) in lecture, then talk about extending it to LR(1)
- LL parsers and recursive descent
- Continue reading ch. 4