Agenda for Today

- Parsing overview
- Context free grammars
- Ambiguous grammars
- Reading: Cooper/Torczon ch. 3, or Dragon Book ch. 4, or Appel ch. 3
Parsing

- The syntax of most programming languages can be specified by a context-free grammar (CGF)
- Parsing: Given a grammar G and a sentence w in $L(G)$, traverse the derivation (parse tree) for w in some standard order and do something useful at each node
 - The tree might not be produced explicitly, but the control flow of a parser corresponds to a traversal
program ::= program | statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if (expr) statement
expr ::= id | int | expr + expr
Id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

a = 1 ; if (a + 1) b = 2 ;
“Standard Order”

- For practical reasons we want the parser to be deterministic (no backtracking), and we want to examine the source program from left to right.
 - (i.e., parse the program in linear time in the order it appears in the source file)
Common Orderings

- **Top-down**
 - Start with the root
 - Traverse the parse tree depth-first, left-to-right (leftmost derivation)

- **LL(k)**

- **Bottom-up**
 - Start at leaves and build up to the root
 - Effectively a rightmost derivation in reverse(!)
 - LR(k) and subsets (LALR(k), SLR(k), etc.)

yacc
“Something Useful”

- At each point (node) in the traversal, perform some semantic action
 - Construct nodes of full parse tree (rare)
 - Construct abstract syntax tree (common)
 - Construct linear, lower-level representation (more common in later parts of a modern compiler)
 - Generate target code on the fly (1-pass compiler; not common in production compilers – can’t generate very good code in one pass – but great if you need a quick ‘n dirty working compiler)
Context-Free Grammars

- Formally, a grammar G is a tuple $<N, \Sigma, P, S>$ where
 - N a finite set of non-terminal symbols
 - Σ a finite set of terminal symbols
 - P a finite set of productions
 - A subset of $N \times (N \cup \Sigma)^*$
 - S the start symbol, a distinguished element of N
 - If not specified otherwise, this is usually assumed to be the non-terminal on the left of the first production
Standard Notations

- a, b, c elements of Σ
- w, x, y, z elements of Σ^*
- A, B, C elements of \mathbb{N}
- X, Y, Z elements of $\mathbb{N} \cup \Sigma$
- α, β, γ elements of $(\mathbb{N} \cup \Sigma)^*$
- $A \rightarrow \alpha$ or $A ::= \alpha$ if $<A, \alpha>$ in P
Derivation Relations (1)

- \[\alpha A \gamma \Rightarrow \alpha \beta \gamma \text{ iff } A ::= \beta \text{ in } P \]
 - derives

- \(A \Rightarrow^* \alpha \) if there is a chain of productions starting with \(A \) that generates \(\alpha \)
 - transitive closure
Derivation Relations (2)

- \(w A \gamma \Rightarrow_{lm} w \beta \gamma \) iff \(A ::= \beta \) in \(P \)
 - derives leftmost

- \(\alpha A w \Rightarrow_{rm} \alpha \beta w \) iff \(A ::= \beta \) in \(P \)
 - derives rightmost

We will only be interested in leftmost and rightmost derivations – not random orderings
Languages

- For A in N, $L(A) = \{ w \mid A \Rightarrow^* w \}$
- If S is the start symbol of grammar G, define $L(G) = L(S)$
 - Nonterminal on the left of the first rule is taken to be the start symbol if one is not specified explicitly
Reduced Grammars

Grammar G is *reduced* iff for every production $A ::= \alpha$ in G there is some derivation

$$S \Rightarrow^* x A z \Rightarrow x \alpha z \Rightarrow^* xyz$$

- i.e., no production is useless

- Convention: we will use only reduced grammars
Ambiguity

- Grammar G is *unambiguous* iff every w in $L(G)$ has a unique leftmost (or rightmost) derivation
 - Fact: unique leftmost or unique rightmost implies the other
- A grammar lacking this property is *ambiguous*
 - Note that other grammars that generate the same language may be unambiguous
- We need unambiguous grammars for parsing
Example: Ambiguous Grammar for Arithmetic Expressions

\[
\text{expr} ::= \text{expr} + \text{expr} \mid \text{expr} - \text{expr} \\
\quad \mid \text{expr} \times \text{expr} \mid \text{expr} / \text{expr} \mid \text{int}
\]

\[
\text{int} ::= 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9
\]

- Exercise: show that this is ambiguous
 - How? Show two different leftmost or rightmost derivations for the same string
 - Equivalently: show two different parse trees for the same string
Example (cont)

- Give a leftmost derivation of \(2 + 3 \times 4\) and show the parse tree.
Example (cont)

- Give a different leftmost derivation of 2+3*4 and show the parse tree

```
expr ::= expr + expr | expr - expr
     | expr * expr | expr / expr | int
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```
Another example

- Give two different derivations of $5+6+7$

```
expr ::= expr + expr | expr - expr
    | expr * expr | expr / expr | int
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```

1. $expr = expr + expr$
 - $expr = int$
 - $int = 5$
 - $expr = expr$
 - $expr = int$
 - $int = 6$
 - $expr = expr$
 - $expr = int$
 - $int = 7$
 - $expr + expr = expr$
 - $expr = int$
 - $int = (6 + 7)$

2. $expr = expr + expr$
 - $expr = int$
 - $int = 5$
 - $expr = expr$
 - $expr = expr$
 - $expr = int$
 - $int = 6$
 - $expr = expr$
 - $expr = int$
 - $int = 7$
 - $expr + expr = expr$
 - $expr = int$
 - $int = (5 + 6)$
 - $expr + expr = expr$
 - $expr = int$
 - $int = 7$
What’s going on here?

- The grammar has no notion of precedence or associatively

Solution

- Create a non-terminal for each level of precedence
- Isolate the corresponding part of the grammar
- Force the parser to recognize higher precedence subexpressions first
Classic Expression Grammar

\[
\begin{align*}
expr &::= expr + term \mid expr - term \mid term \\
term &::= term \ast factor \mid term \div factor \mid factor \\
factor &::= int \mid (expr) \\
int &::= 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7
\end{align*}
\]
Check: Derive $2 + 3 \times 4$
Check: Derive $5 + 6 + 7$

- Note interaction between left- vs right-recursive rules and resulting associativity
Another Classic Example

- Grammar for conditional statements

\[
Stmt ::= \text{if (cond) stmt} \\
| \text{if (cond) stmt else stmt}
\]

- Exercise: show that this is ambiguous
 - How?
One Derivation

\[\text{ifstmt} ::= \text{if (cond) stmt} \\
\quad \mid \text{if (cond) stmt else stmt} \]

Diagram:

```
  stmt
 /     \\
/       \\
\text{if ( cond )} \quad \text{if ( cond )} \quad \text{stmt} \quad \text{else} \quad \text{stmt}
```
Another Derivation

\[istmt ::= if (\text{cond}) stmt \]
\[| \text{if (cond) stmt else stmt} \]
Solving “if” Ambiguity

- Fix the grammar to separate if statements with else clause and if statements with no else
 - Done in Java reference grammar
 - Adds lots of non-terminals
- Use some ad-hoc rule in parser
 - “else matches closest unpaired if”
- Change the language
 - You better have permission to do this
Resolving Ambiguity with Grammar (1)

Stmt ::= MatchedStmt | UnmatchedStmt
MatchedStmt ::= ...
 | if (Expr) MatchedStmt else MatchedStmt
UnmatchedStmt ::= if (Expr) Stmt |
 if (Expr) MatchedStmt else UnmatchedStmt

- formal, no additional rules beyond syntax
- sometimes obscures original grammar
Resolving Ambiguity with Grammar (2)

- If you can (re-)design the language, avoid the problem entirely

Stmt ::= ... |
 if Expr then Stmt end |
 if Expr then Stmt else Stmt end

- formal, clear, elegant
- allows sequence ofStmts in then and else branches, no {,} needed
- extra end required for every if
 (But maybe this is a good idea anyway?)
Parser Tools and Operators

- Most parser tools can cope with ambiguous grammars
 - Makes life simpler if used with discipline
- Usually can specify operator precedence & associativity
 - Allows simpler, ambiguous grammar with fewer nonterminals as basis for generated parser, without creating problems
Parser Tools and Ambiguous Grammars

- Possible rules for resolving other problems
 - Earlier productions in the grammar preferred to later ones
 - Longest match used if there is a choice
- Parser tools normally allow for this
 - But be sure that what the tool does is really what you want