
CSE P 501 – Compilers

Languages, Automata, Regular
Expressions & Scanners

Hal Perkins
Autumn 2011

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-1

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-2

Agenda

 Basic concepts of formal languages and
grammars (mostly review)

 Regular expressions

 Lexical specification of programming
languages

 Using finite automata to recognize
regular expressions

 Scanners and Tokens

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-3

Programming Language Specs

 Since the 1960s, the syntax of every
significant programming language has
been specified by a formal grammar

 First done in 1959 with BNF (Backus-Naur
Form) used to specify ALGOL 60 syntax

 Borrowed from the linguistics community
(Chomsky)

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-4

Grammar for a Tiny Language

 program ::= statement | program statement

 statement ::= assignStmt | ifStmt

 assignStmt ::= id = expr ;

 ifStmt ::= if (expr) statement

 expr ::= id | int | expr + expr

 id ::= a | b | c | i | j | k | n | x | y | z

 int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-5

Productions

 The rules of a grammar are called productions
 Rules contain

 Nonterminal symbols: grammar variables (program,
statement, id, etc.)

 Terminal symbols: concrete syntax that appears in programs
(a, b, c, 0, 1, if, (,), …)

 Meaning of
 nonterminal ::= <sequence of terminals and nonterminals>

 In a derivation, an instance of nonterminal can be replaced
by the sequence of terminals and nonterminals on the right
of the production

 Often, there are two or more productions for one
nonterminal – use any in different parts of derivation

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-6

Alternative Notations

 There are several syntax notations for
productions in common use; all mean
the same thing

ifStmt ::= if (expr) statement

ifStmt if (expr) statement

<ifStmt> ::= if (<expr>) <statement>

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-7

Example
Derivation

a = 1 ; if (a + 1) b = 2 ;

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if (expr) statement
expr ::= id | int | expr + expr
Id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-8

Parsing

 Parsing: reconstruct the derivation
(syntactic structure) of a program

 In principle, a single recognizer could
work directly from a concrete,
character-by-character grammar

 In practice this is never done

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-9

Parsing & Scanning

 In real compilers the recognizer is split into
two phases

 Scanner: translate input characters to tokens

 Also, report lexical errors like illegal characters and illegal
symbols

 Parser: read token stream and reconstruct the
derivation

Scanner Parser
source tokens

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-10

Characters vs Tokens

 Input text
// this statement does very little

if (x >= y) y = 42;

 Token Stream

IF LPAREN ID(x) GEQ ID(y)

RPAREN ID(y) BECOMES INT(42) SCOLON

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-11

Why Separate the Scanner
and Parser?

 Simplicity & Separation of Concerns
 Scanner hides details from parser

(comments, whitespace, input files, etc.)

 Parser is easier to build; has simpler input
stream (tokens)

 Efficiency
 Scanner can use simpler, faster design

 (But still often consumes a surprising amount
of the compiler’s total execution time)

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-12

Tokens

 Idea: we want a distinct token kind
(lexical class) for each distinct terminal
symbol in the programming language
 Examine the grammar to find these

 Some tokens may have attributes
 Examples: integer constant token will have

the actual integer (17, 42, …) as an
attribute; identifiers will have a string with
the actual id

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-13

Typical Tokens in
Programming Languages

 Operators & Punctuation
 + - * / () { } [] ; : :: < <= == = != ! …

 Each of these is normally a distinct lexical class

 Keywords
 if while for goto return switch void …

 Each of these is also a distinct lexical class (not a string)

 Identifiers
 A single ID lexical class, but parameterized by actual id

 Integer constants
 A single INT lexical class, but parameterized by int value

 Other constants, etc.

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-14

Principle of Longest Match

 In most languages, the scanner should pick
the longest possible string to make up the
next token if there is a choice

 Example
 return maybe != iffy;

 should be recognized as 5 tokens

 i.e., != is one token, not two, “iffy” is an ID, not
IF followed by ID(fy)

RETURN ID(maybe) NEQ ID(iffy) SCOLON

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-15

Formal Languages & Automata
Theory (a review in one slide)

 Alphabet: a finite set of symbols
 String: a finite, possibly empty sequence of symbols

from an alphabet
 Language: a set, often infinite, of strings
 Finite specifications of (possibly infinite) languages

 Automaton – a recognizer; a machine that accepts all strings
in a language (and rejects all other strings)

 Grammar – a generator; a system for producing all strings in
the language (and no other strings)

 A particular language may be specified by many
different grammars and automata

 A grammar or automaton specifies only one language

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-16

Regular Expressions and FAs

 The lexical grammar (structure) of most
programming languages can be
specified with regular expressions

 (Sometimes a little cheating is needed)

 Tokens can be recognized by a
deterministic finite automaton

 Can be either table-driven or built by hand
based on lexical grammar

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-17

Regular Expressions

 Defined over some alphabet Σ

 For programming languages, alphabet is
usually ASCII or Unicode

 If re is a regular expression, L(re) is
the language (set of strings) generated
by re

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-18

Fundamental REs



re L(re) Notes

a { a } Singleton set, for each a in Σ

ε { ε } Empty string

{ } Empty language

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-19

Operations on REs

 Precedence: * (highest), concatenation, | (lowest)

 Parentheses can be used to group REs as needed

re L(re) Notes

rs L(r)L(s) Concatenation

r|s L(r) L(s) Combination (union)

r* L(r)* 0 or more occurrences
(Kleene closure)



10/6/2011 © 2002-11 Hal Perkins & UW CSE B-20

Abbreviations

 The basic operations generate all possible regular
expressions, but there are common abbreviations
used for convenience. Typical examples:

Abbr. Meaning Notes

r+ (rr*) 1 or more occurrences

r? (r | ε) 0 or 1 occurrence

[a-z] (a|b|…|z) 1 character in given range

[abxyz] (a|b|x|y|z) 1 of the given characters

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-21

Examples

re Meaning

+ single + character

! single ! character

= single = character

!= 2 character sequence

<= 2 character sequence

xyzzy 5 character sequence

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-22

More Examples

re Meaning

[abc]+

[abc]*

[0-9]+

[1-9][0-9]*

[a-zA-Z][a-zA-Z0-9_]*

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-23

Abbreviations

 Many systems allow abbreviations to
make writing and reading definitions or
specifications easier

 name ::= re

 Restriction: abbreviations may not be
circular (recursive) either directly or
indirectly (else would be non-regular)

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-24

Example

 Possible syntax for numeric constants
 digit ::= [0-9]

 digits ::= digit+

 number ::= digits (. digits)?

 ([eE] (+ | -)? digits) ?

 How would you describe this set in English?

 What are some examples of legal constants
(strings) generated by number?

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-25

Recognizing REs

 Finite automata can be used to
recognize strings generated by regular
expressions

 Can build by hand or automatically

 Not totally straightforward, but can be
done systematically

 Tools like Lex, Flex, Jlex et seq do this
automatically, given a set of REs

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-26

Finite State Automaton

 A finite set of states
 One marked as initial state
 One or more marked as final states
 States sometimes labeled or numbered

 A set of transitions from state to state
 Each labeled with symbol from Σ, or ε

 Operate by reading input symbols (usually characters)
 Transition can be taken if labeled with current symbol
 ε-transition can be taken at any time

 Accept when final state reached & no more input
 Scanner uses a FSA as a subroutine – accept longest match from

current location each time called, even if more input

 Reject if no transition possible, or no more input and not in
final state (DFA)

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-27

Example: FSA for “cat”

a t c

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-28

DFA vs NFA

 Deterministic Finite Automata (DFA)
 No choice of which transition to take under any

condition

 In particular, no ε transitions (arcs)

 Non-deterministic Finite Automata (NFA)
 Choice of transition in at least one case

 Accept if some way to reach final state on given
input

 Reject if no possible way to final state

 i.e., may need to guess or backtrack

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-29

FAs in Scanners

 Want DFA for speed (no backtracking)

 Conversion from regular expressions to
NFA is easy

 There is a well-defined procedure for
converting a NFA to an equivalent DFA

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-30

From RE to NFA: base cases

a

ε

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-31

rs

r s ε

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-32

r | s

r

s ε ε

ε ε

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-33

r *

r

ε

ε ε

Exercise

 Draw the NFA for: b(at|ag) | bug

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-34

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-35

From NFA to DFA

 Subset construction
 Construct a DFA from the NFA, where each DFA state

represents a set of NFA states

 Key idea
 The state of the DFA after reading some input is the set of

all states the NFA could have reached after reading the
same input

 Algorithm: example of a fixed-point computation
 If NFA has n states, DFA has at most 2n states

 => DFA is finite, can construct in finite # steps

 Resulting DFA may have more states than needed
 See books for construction and minimization details

Exercise

 Build DFA for b(at|ag)|bug, given the NFA

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-36

Example: DFA for hand-
written scanner

 Idea: show a hand-written DFA for some
typical programming language constructs
 Then use to construct hand-written scanner

 Setting: Scanner is called whenever the parser
needs a new token
 Scanner stores current position in input
 Starting there, use a DFA to recognize the longest

possible input sequence that makes up a token
and return that token

 Disclaimer: For illustration only. Course project
will use scanner generator

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-37

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-38

Scanner DFA Example (1)

0

Accept LPAREN
(

2

Accept RPAREN
)

3

whitespace
or comments

Accept SCOLON
;

4

Accept EOF
end of input

1

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-39

Scanner DFA Example (2)

Accept NEQ
!

6

Accept NOT 7

5
=

[other]

Accept LEQ
<

9

Accept LESS 10

8
=

[other]

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-40

Scanner DFA Example (3)

[0-9]

Accept INT 12

11

[other]

[0-9]

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-41

 Strategies for handling identifiers vs keywords
 Hand-written scanner: look up identifier-like things in table of

keywords to classify (good application of perfect hashing)

 Machine-generated scanner: generate DFA will appropriate
transitions to recognize keywords

 Lots ’o states, but efficient (no extra lookup step)

Scanner DFA Example (4)

[a-zA-Z]

Accept ID or keyword 14

13

[other]

[a-zA-Z0-9_]

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-42

Implementing a Scanner by
Hand – Token Representation

 A token is a simple, tagged structure
public class Token {

 public int kind; // token’s lexical class

 public int intVal; // integer value if class = INT

 public String id; // actual identifier if class = ID

 // lexical classes

 public static final int EOF = 0; // “end of file” token

 public static final int ID = 1; // identifier, not keyword

 public static final int INT = 2; // integer

 public static final int LPAREN = 4;

 public static final int SCOLN = 5;

 public static final int WHILE = 6;

 // etc. etc. etc. …

better: use
enums if you
have them

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-43

Simple Scanner Example

// global state and methods

static char nextch; // next unprocessed input character

// advance to next input char
void getch() { … }

// skip whitespace and comments
void skipWhitespace() { … }

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-44

Scanner getToken() method

// return next input token
public Token getToken() {
 Token result;

 skipWhiteSpace();

 if (no more input) {
 result = new Token(Token.EOF); return result;
 }

 switch(nextch) {
 case '(': result = new Token(Token.LPAREN); getch(); return result;
 case ‘)': result = new Token(Token.RPAREN); getch(); return result;
 case ‘;': result = new Token(Token.SCOLON); getch(); return result;

 // etc. …

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-45

getToken() (2)

 case '!': // ! or !=
 getch();
 if (nextch == '=') {
 result = new Token(Token.NEQ); getch(); return result;
 } else {
 result = new Token(Token.NOT); return result;
 }

 case '<': // < or <=
 getch();
 if (nextch == '=') {
 result = new Token(Token.LEQ); getch(); return result;
 } else {
 result = new Token(Token.LESS); return result;
 }
 // etc. …

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-46

getToken() (3)

 case '0': case '1': case '2': case '3': case '4':
 case '5': case '6': case '7': case '8': case '9':
 // integer constant
 String num = nextch;
 getch();
 while (nextch is a digit) {
 num = num + nextch; getch();
 }
 result = new Token(Token.INT, Integer(num).intValue());
 return result;
 …

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-47

getToken() (4)

 case 'a': … case 'z':
 case 'A': … case 'Z': // id or keyword
 string s = nextch; getch();
 while (nextch is a letter, digit, or underscore) {
 s = s + nextch; getch();
 }
 if (s is a keyword) {
 result = new Token(keywordTable.getKind(s));
 } else {
 result = new Token(Token.ID, s);
 }
 return result;

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-48

Project Notes

 For the course project (when we get
there), use a lexical analyzer generator

 Suggestion: JFlex a Java Lex-lookalike

 Works with CUP – a Java yacc/bison
implementation

 Symbolic constant definitions for lexical
classes shared between scanner/parser –
usually defined in parser input file

10/6/2011 © 2002-11 Hal Perkins & UW CSE B-49

Coming Attractions

 Homework this week: paper exercises on
regular expressions, FAs. Due Monday night.

 Next week: first part of the compiler
assignment – the scanner
 Send partner info if you want project space

 Next topic: parsing
 Will do LR parsing first – use this for the project

(thus CUP (Bison/YACC-like) instead of JavaCC or
ANTLR)

 Good time to start reading next chapter(s)

