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Agenda 

 Basic concepts of formal languages and  
grammars (mostly review) 

 Regular expressions 

 Lexical specification of programming 
languages 

 Using finite automata to recognize 
regular expressions 

 Scanners and Tokens 
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Programming Language Specs 

 Since the 1960s, the syntax of every 
significant programming language has 
been specified by a formal grammar 

 First done in 1959 with BNF (Backus-Naur 
Form) used to specify ALGOL 60 syntax 

 Borrowed from the linguistics community 
(Chomsky) 
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Grammar for a Tiny Language 

 program ::= statement | program statement 

 statement ::= assignStmt | ifStmt 

 assignStmt ::= id = expr ; 

 ifStmt ::= if ( expr ) statement 

 expr ::= id | int | expr + expr 

 id ::= a | b | c | i | j | k | n | x | y | z 

 int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
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Productions 

 The rules of a grammar are called productions 
 Rules contain 

 Nonterminal symbols: grammar variables (program, 
statement, id, etc.) 

 Terminal symbols: concrete syntax that appears in programs 
(a, b, c, 0, 1, if, (, ), … ) 

 Meaning of  
      nonterminal ::= <sequence of terminals and nonterminals> 

 In a derivation, an instance of nonterminal can be replaced 
by the sequence of terminals and nonterminals on the right 
of the production 

 Often, there are two or more productions for one 
nonterminal – use any in different parts of derivation 
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Alternative Notations 

 There are several syntax notations for 
productions in common use; all mean 
the same thing 

ifStmt ::= if ( expr ) statement 

ifStmt      if ( expr ) statement 

<ifStmt> ::= if ( <expr> ) <statement> 
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Example  
Derivation 

 

 

 

 

 

 

a = 1  ;   if   (   a    +    1   )      b  =  2  ; 

program ::= statement | program statement 
statement ::= assignStmt | ifStmt 
assignStmt ::= id = expr ; 
ifStmt ::= if ( expr ) statement 
expr ::= id | int | expr + expr 
Id ::= a | b | c | i | j | k | n | x | y | z 
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
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Parsing 

 Parsing: reconstruct the derivation 
(syntactic structure) of a program 

 In principle, a single recognizer could 
work directly from a concrete, 
character-by-character grammar 

 In practice this is never done 
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Parsing & Scanning 

 In real compilers the recognizer is split into 
two phases 

 Scanner: translate input characters to tokens 

 Also, report lexical errors like illegal characters and illegal 
symbols 

 Parser: read token stream and reconstruct the 
derivation 

Scanner Parser 
source tokens 
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Characters vs Tokens 

 Input text 
// this statement does very little 

if (x >= y) y = 42; 

 Token Stream 

IF LPAREN ID(x) GEQ ID(y) 

RPAREN ID(y) BECOMES INT(42) SCOLON 
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Why Separate the Scanner 
and Parser? 

 Simplicity & Separation of Concerns 
 Scanner hides details from parser 

(comments, whitespace, input files, etc.) 

 Parser is easier to build; has simpler input 
stream (tokens) 

 Efficiency 
 Scanner can use simpler, faster design 

 (But still often consumes a surprising amount 
of the compiler’s total execution time) 
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Tokens 

 Idea: we want a distinct token kind 
(lexical class) for each distinct terminal 
symbol in the programming language 
 Examine the grammar to find these 

 Some tokens may have attributes 
 Examples: integer constant token will have 

the actual integer (17, 42, …) as an 
attribute; identifiers will have a string with 
the actual id 



10/6/2011 © 2002-11 Hal Perkins & UW CSE B-13 

Typical Tokens in 
Programming Languages 

 Operators & Punctuation 
 + - * / ( ) { } [ ] ; : :: < <= == = != ! … 

 Each of these is normally a distinct lexical class 

 Keywords 
 if  while  for  goto  return  switch  void  … 

 Each of these is also a distinct lexical class (not a string) 

 Identifiers 
 A single ID lexical class, but parameterized by actual id 

 Integer constants 
 A single INT lexical class, but parameterized by int value 

 Other constants, etc. 
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Principle of Longest Match 

 In most languages, the scanner should pick 
the longest possible string to make up the 
next token if there is a choice 

 Example 
 return maybe != iffy; 

 should be recognized as 5 tokens 

 

  

 i.e., != is one token, not two, “iffy” is an ID, not 
IF followed by ID(fy) 

RETURN ID(maybe) NEQ ID(iffy) SCOLON 
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Formal Languages & Automata 
Theory (a review in one slide) 

 Alphabet: a finite set of symbols 
 String: a finite, possibly empty sequence of symbols 

from an alphabet 
 Language: a set, often infinite, of strings 
 Finite specifications of (possibly infinite) languages 

 Automaton – a recognizer; a machine that accepts all strings 
in a language (and rejects all other strings) 

 Grammar – a generator; a system for producing all strings in 
the language (and no other strings) 

 A particular language may be specified by many 
different grammars and automata 

 A grammar or automaton specifies only one language 
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Regular Expressions and FAs 

 The lexical grammar (structure) of most 
programming languages can be 
specified with regular expressions 

 (Sometimes a little cheating is needed) 

 Tokens can be recognized by a 
deterministic finite automaton 

 Can be either table-driven or built by hand 
based on lexical grammar 



10/6/2011 © 2002-11 Hal Perkins & UW CSE B-17 

Regular Expressions 

 Defined over some alphabet Σ 

 For programming languages, alphabet is 
usually ASCII or Unicode 

 If re is a regular expression, L(re ) is 
the language (set of strings) generated 
by re 
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Fundamental REs 



re L(re ) Notes 

a { a } Singleton set, for each a in Σ 

ε { ε } Empty string 

{ } Empty language 
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Operations on REs 

 

 

 

 

 

 

 

 Precedence: * (highest), concatenation, | (lowest) 

 Parentheses can be used to group REs as needed 

re L(re ) Notes 

rs L(r)L(s) Concatenation 

r|s L(r)    L(s) Combination (union) 

r* L(r)* 0 or more occurrences 
(Kleene closure) 


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Abbreviations 

 The basic operations generate all possible regular 
expressions, but there are common abbreviations 
used for convenience.  Typical examples: 

Abbr. Meaning Notes 

r+ (rr*) 1 or more occurrences 

r? (r | ε) 0 or 1 occurrence 

[a-z] (a|b|…|z) 1 character in given range 

[abxyz] (a|b|x|y|z) 1 of the given characters 
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Examples 

re Meaning 

+ single + character 

! single ! character 

= single = character 

!= 2 character sequence 

<= 2 character sequence 

xyzzy 5 character sequence 
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More Examples 

re Meaning 

[abc]+ 

[abc]* 

[0-9]+ 

[1-9][0-9]* 

[a-zA-Z][a-zA-Z0-9_]* 
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Abbreviations 

 Many systems allow abbreviations to 
make writing and reading definitions or 
specifications easier 

  name ::= re 

 

 Restriction: abbreviations may not be 
circular (recursive) either directly or 
indirectly (else would be non-regular) 
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Example 

 Possible syntax for numeric constants 
 digit ::= [0-9] 

 digits ::= digit+ 

 number ::= digits  ( . digits )? 

        ( [eE] (+ | -)? digits ) ? 

 

 How would you describe this set in English? 

 What are some examples of legal constants 
(strings) generated by number? 
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Recognizing REs 

 Finite automata can be used to 
recognize strings generated by regular 
expressions 

 Can build by hand or automatically 

 Not totally straightforward, but can be 
done systematically 

 Tools like Lex, Flex, Jlex et seq do this 
automatically, given a set of REs 
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Finite State Automaton 

 A finite set of states 
 One marked as initial state 
 One or more marked as final states 
 States sometimes labeled or numbered 

 A set of transitions from state to state 
 Each labeled with symbol from Σ, or ε 

 Operate by reading input symbols (usually characters) 
 Transition can be taken if labeled with current symbol 
 ε-transition can be taken at any time 

 Accept when final state reached & no more input 
 Scanner uses a FSA as a subroutine – accept longest match from 

current location each time called, even if more input 

 Reject if no transition possible, or no more input and not in 
final state (DFA) 
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Example: FSA for “cat” 

a t c 
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DFA vs NFA 

 Deterministic Finite Automata (DFA) 
 No choice of which transition to take under any 

condition 

 In particular, no ε transitions (arcs) 

 Non-deterministic Finite Automata (NFA) 
 Choice of transition in at least one case 

 Accept if some way to reach final state on given 
input 

 Reject if no possible way to final state 

 i.e., may need to guess or backtrack 
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FAs in Scanners 

 Want DFA for speed (no backtracking) 

 Conversion from regular expressions to 
NFA is easy 

 There is a well-defined procedure for 
converting a NFA to an equivalent DFA 
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From RE to NFA: base cases 

a 

ε 
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rs 

r s ε 
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r  | s 

r 

s ε ε 

ε ε 
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r * 

r 

ε 

ε ε 



Exercise 

 Draw the NFA for:   b(at|ag) | bug 
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From NFA to DFA 

 Subset construction 
 Construct a DFA from the NFA, where each DFA state 

represents a set of NFA states 

 Key idea 
 The state of the DFA after reading some input is the set of 

all  states the NFA could have reached after reading the 
same input 

 Algorithm: example of a fixed-point computation 
 If NFA has n states, DFA has at most 2n states  

 => DFA is finite, can construct in finite # steps 

 Resulting DFA may have more states than needed 
 See books for construction and minimization details 



Exercise 

 Build DFA for b(at|ag)|bug, given the NFA 
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Example: DFA for hand-
written scanner 

 Idea: show a hand-written DFA for some 
typical programming language constructs 
 Then use to construct hand-written scanner 

 Setting: Scanner is called whenever the parser 
needs a new token 
 Scanner stores current position in input 
 Starting there, use a DFA to recognize the longest 

possible input sequence that makes up a token 
and return that token 

 Disclaimer: For illustration only. Course project 
will use scanner generator 
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Scanner DFA Example (1) 

0 

Accept LPAREN 
( 

2 

Accept RPAREN 
) 

3 

whitespace 
or comments 

Accept SCOLON 
; 

4 

Accept EOF 
end of input 

1 
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Scanner DFA Example (2) 

Accept NEQ 
! 

6 

Accept NOT 7 

5 
= 

[other ] 

Accept LEQ 
< 

9 

Accept LESS 10 

8 
= 

[other ] 
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Scanner DFA Example (3) 

[0-9] 

Accept INT 12 

11 

[other ] 

[0-9] 
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 Strategies for handling identifiers vs keywords 
 Hand-written scanner: look up identifier-like things in table of 

keywords to classify (good application of perfect hashing) 

 Machine-generated scanner: generate DFA will appropriate 
transitions to recognize keywords 

 Lots ’o states, but efficient (no extra lookup step) 

Scanner DFA Example (4) 

[a-zA-Z] 

Accept ID or keyword 14 

13 

[other ] 

[a-zA-Z0-9_] 
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Implementing a Scanner by 
Hand – Token Representation 

 A token is a simple, tagged structure 
public class Token { 

 public int kind;             // token’s lexical class 

 public int intVal; // integer value if class = INT 

 public String id;  // actual identifier if class = ID 

 // lexical classes 

 public static final int EOF = 0; // “end of file” token 

 public static final int ID   = 1; // identifier, not keyword 

 public static final int INT = 2; // integer 

 public static final int LPAREN = 4; 

 public static final int SCOLN   = 5; 

 public static final int WHILE   = 6; 

 // etc. etc. etc. … 

better: use 
enums if you 
have them 
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Simple Scanner Example 

// global state and methods 
 
static char nextch; // next unprocessed input character 
 
// advance to next input char 
void getch() { … } 
 
// skip whitespace and comments 
void skipWhitespace() { … } 
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Scanner getToken() method 

// return next input token 
public Token getToken() { 
  Token result; 
 
  skipWhiteSpace(); 
 
  if (no more input) { 
 result = new Token(Token.EOF); return result; 
  } 
 
  switch(nextch) { 
 case '(': result = new Token(Token.LPAREN); getch(); return result;  
 case ‘)': result = new Token(Token.RPAREN); getch(); return result; 
 case ‘;': result = new Token(Token.SCOLON); getch(); return result; 
  
 // etc. … 
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getToken() (2) 

 case '!': // ! or != 
     getch(); 
     if (nextch == '=') { 
       result = new Token(Token.NEQ); getch(); return result; 
     } else { 
       result = new Token(Token.NOT); return result; 
     } 
   
 case '<': // < or <= 
     getch(); 
     if (nextch == '=') { 
       result = new Token(Token.LEQ); getch(); return result; 
     } else { 
       result = new Token(Token.LESS); return result; 
     } 
 // etc. … 
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getToken() (3) 

  case '0': case '1': case '2': case '3': case '4':  
  case '5': case '6': case '7': case '8': case '9':  
     // integer constant 
     String num = nextch; 
     getch(); 
     while (nextch is a digit) { 
        num = num + nextch; getch(); 
     } 
     result = new Token(Token.INT, Integer(num).intValue()); 
     return result; 
 … 
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getToken() (4) 

 case 'a': … case 'z': 
 case 'A': … case 'Z':  // id or keyword 
  string s = nextch; getch(); 
  while (nextch is a letter, digit, or underscore) { 
     s = s + nextch; getch(); 
  } 
  if (s is a keyword) { 
     result = new Token(keywordTable.getKind(s)); 
  } else { 
     result = new Token(Token.ID, s); 
  } 
  return result; 
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Project Notes 

 For the course project (when we get 
there), use a lexical analyzer generator 

 Suggestion: JFlex a Java Lex-lookalike 

 Works with CUP – a Java yacc/bison 
implementation 

 Symbolic constant definitions for lexical 
classes shared between scanner/parser – 
usually defined in parser input file 
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Coming Attractions 

 Homework this week: paper exercises on 
regular expressions, FAs.  Due Monday night. 

 Next week: first part of the compiler 
assignment – the scanner 
 Send partner info if you want project space 

 Next topic: parsing 
 Will do LR parsing first – use this for the project 

(thus CUP (Bison/YACC-like) instead of JavaCC or 
ANTLR) 

 Good time to start reading next chapter(s) 


