
 CSE P 501 Exam Sample Solution 12/1/11

 Page 1 of 13

Question 1. (10 points, 5 each) Regular expressions. Give regular expressions that

generate the following sets of strings. You may only use the basic operations of

concatenation, choice (|), and repetition (*) plus the derived operators ? and +, and simple

character classes like [abc0-9] and [^a-z]. You may use abbreviations like

vowels = [aeiou]. You may not use more complex operators found in various

software tools that handle extended regular expressions.

(a) All sequences of 0’s and 1’s that contain an odd number of 1’s and contain at least

one or more 1’s.

There are many possible solutions. A fairly simple one is 0*1(0|(10*1))*

(b) All strings containing a’s, b’s, and c’s with at least one a and at least one b.

 Let abcs = (a|b|c)* (or [abc]*)

 abcs a abcs b abcs | abcs b abcs a abcs

 CSE P 501 Exam Sample Solution 12/1/11

 Page 2 of 13

Question 2. (10 points) Context-free grammars. Consider the following syntax for

expressions involving addition and field selection:

 expr ::= expr + field

 expr ::= field

 field ::= expr . id

 field ::= id

(a) (6 points) Show that this grammar is ambiguous.

Here are two derivations of id+id.id:

(b) (4 points) Give an unambiguous context-free grammar that fixes the problem(s) with

the grammar in part (a) and generates expressions with id, field selection and addition.

As in Java, field selection should have higher precedence than addition and both field

selection and addition should be left-associative (i.e., a+b+c means (a+b)+c).

The problem is in the first rule for field, which creates an ambiguous precedence.

Here is a reasonably simple fix.

 expr ::= expr + field

 expr ::= field

 field ::= field . id

 field ::= id

expr

expr

field

id + id . id

field

expr

field

expr

id + id . id

field

expr

field
expr

field

 CSE P 501 Exam Sample Solution 12/1/11

 Page 3 of 13

Question 3. (18 points) The (almost) obligatory LR-parsing question. Consider the

following grammar that is meant to capture expressions involving addition (+) and

exponentiation (**), where addition is left associative and exponentiation is right

associative.

0. e' ::= e $

1. e ::= e + t

2. e ::= t

3. t ::= x ** t

4. t ::= x

(a) (10 points) Draw the LR(0) state machine for this grammar. (You do not need to

include the table with shift/reduce and goto actions, although you can write that out later

if you find it useful to answer other parts of the question.)

The operator ** was intended to be a single token. A number of solutions treated it

as two adjacent * tokens. If that was done correctly no points were deducted.

(continued next page)

e' ::= . e $

e ::= . e + t

e ::= . t

t ::= . x ** t

t ::= . x

e ::= t .

e ::= e + . t

t ::= . x ** t

t ::= . x

e' ::= e . $

e ::= e . + t

t ::= x . ** t

t ::= x .

e ::= e + t .
t ::= x ** . t

t ::= . x ** t

t ::= . x

t ::= x ** t .

*

e

t

x

x

**

t

+

t
x

 CSE P 501 Exam Sample Solution 12/1/11

 Page 4 of 13

Question 3 (cont.) Grammar repeated for reference

0. e' ::= e $

1. e ::= e + t

2. e ::= t

3. t ::= x ** t

4. t ::= x

(b) (2 points) Is this grammar LR(0)? Why or why not?

No. The state labeled * in the diagram has a shift-reduce conflict if the input is **.

(c) (4 points) Compute First, Follow, and Nullable for each of the non-terminals in this

grammar.

(d) (2 points) Is this grammar SLR? Why or why not?

Yes. The operator ** is not contained in Follow(t) so we can resolve the shift-reduce

conflict in favor of a shift on input **.

 first follow nullable

e' x no

e x +, $ no

t x +, $ no

 CSE P 501 Exam Sample Solution 12/1/11

 Page 5 of 13

Question 4. (22 points) We would like to add a new loop to MiniJava that is similar to a

while loop except that it can have multiple conditions and statement sequences in a loop.

The simple case has one condition and a sequence of statements. For example, the loop

 do i<n => sum=sum+a[i]; i++; od

is equivalent to the traditional loop

 while (i<n) { sum=sum+a[i]; i++; }

The difference is that parentheses are not required around the condition, the terminal

symbol => separates the condition from the loop body, the end of the loop is indicated by

the keyword od with no semicolon or other punctuation after it, and the loop body can

have several statements without requiring curly braces because the => and od symbols

indicate the extent of the loop body.

These loops can be nested in the obvious way since the new loop is just another kind of

statement. For example, if we had 2-D arrays, a n x n array could be initialized with

 i=0;

 do i<n => j=0;

 do j<n => a[i][j]=0; j++; od

 i++;

 od

More interesting, a loop may contain more than one condition plus statement sequence

group. The loop below changes positive integers x and y so that on termination both of

them contain the greatest common divisor of their original values.

 do x>y => x=x-y;

 [] y>x => y=y-x;

 od

If a loop contains more than one condition/statement sequence group, they are separated

by a box made up of left and right brackets with no space between ([]). To execute the

loop the conditions are evaluated in order from the beginning. If a condition evaluates to

true, the corresponding statement(s) following the => symbol up to the next [] or od are

executed, and then that iteration of the loop is finished. Execution of the next iteration of

the loop begins back at the top after do. If no condition is true, then execution of the

loop terminates. In other words, on each iteration of the loop, at most one sequence of

statements is executed – the statements following the first true condition in the list – and

later conditions and statements in the loop are not executed on that iteration.

 (You may detach this page from the exam while working,

but must turn it in with the rest of the exam.)

 CSE P 501 Exam Sample Solution 12/1/11

 Page 6 of 13

Question 4 (cont.) Answer the following questions about the new loop statement.

(a) (6 points) Give an unambiguous context free grammar rule or rules to add this new

kind of loop to the MiniJava grammar for Statement. Your answer should include

additional new terminals and non-terminals as needed and can include additional

grammar rules for non-terminals if appropriate. You only need to give the additions and

changes to the MiniJava grammar; you do not need to write CUP or other parser-

generator source code.

[Historical note: the do-od loop and a similar if-fi conditional statement were

introduced by Dijkstra in 1976. The condition=>statements pair was called a

guarded command – the condition being the guard that determined whether the

statements were executed. Thus the (possibly unexpected) names of the

nonterminals in the sample solution below.]

 Statement ::= “do” Guards “od”

 Guards ::= Guard | Guards “[]” Guard

 Guard ::= Expression “=>” (Statement)*

(b) (3 points) What changes need to be made to the MiniJava scanner to add this new

loop statement to the language? Again, just describe the changes. You do not need to

write JFlex/CUP or other source code.

We need to add new tokens for do, od, =>, and []. (Note that we do need [] to be

a new, separate token even though [and] are already MiniJava tokens. No space

is allowed between the brackets when [] is used to separate sequences of guards.

 CSE P 501 Exam Sample Solution 12/1/11

 Page 7 of 13

Question 4 (cont.) (c) (4 points) What changes or additions need to be made to the

MiniJava Abstract Syntax Tree classes or node definitions to include this new loop

statement in the MiniJava abstract grammar? Your answer should give a description of

the kinds of nodes that need to be added or changed and their contents. It does not need

to be detailed Java, C#, or other code.

There are many possible ways to do this and answers that were plausible received

credit. The simplest solution would be to add a new DoStatement class extending

Statement containing a list of Expression/Statement-list pairs as its children.

(d) (3 points) What checks need to be added to the static semantics/type checking phase

of the compiler for this new loop statement?

Verify that the expressions to the left of each => have type Boolean.

 CSE P 501 Exam Sample Solution 12/1/11

 Page 8 of 13

Question 4. (cont.) (e) (6 points) Outline the code shape (essentially the pseudo-

assembly language) needed to implement this new loop statement. Your answer should

show the code shape needed for a loop like the following one with two condition/

statement sequence pairs:

 do cond1 => stmt1

 [] cond2 => stmt2

 od

The answer should be similar to the examples given in class for other control constructs

showing where labels and jumps would appear and where the code for the conditions and

statements inside the loop would be placed.

 loop:

 <code for cond1>

 jmpfalse test2

 <code for stmt1>

 jmp loop

 test2:

 <code for cond2>

 jmpfalse done

 <code for stmt2>

 jmp loop

 done:

 CSE P 501 Exam Sample Solution 12/1/11

 Page 9 of 13

Question 5. (17 points) Consider the following C data structure definition and function.

(This code uses the gcc convention that long is a 64-bit integer type):

 struct node { // node with 64-bit int and pointer

 long val;

 struct node * next;

 };

 long sum(struct node * p) {

 long first, rest;

 if (p == NULL) {

 return 0;

 } else {

 first = p->val;

 rest = sum(p->next);

 return first+rest;

 }

 }

This question involves translating this function to x86-64 assembler code. Ground rules:

 You may use either Linux/gcc or Microsoft/masm assembly language, and must

follow the corresponding register linkage and stack frame conventions.

o Linux argument registers: rdi, rsi, rdx, rcx, r8, r9

o Linux: called function must save/restore rbx, rbp, r12-r15 if used.

o Microsoft argument registers: rcx, rdx, r8, r9; caller must provide

a save area for these four parameter registers at the bottom of the caller’s

stack frame that the called function can use if desired.

o Microsoft: called function must save/restore rbx, rsi, rdi, rbp,

r12-r15 if used.

o Both: function result returned in rax.

o Both: rsp must be aligned on a 16-byte boundary when a call

instruction is executed to call the function.

 Pointers and ints are 64 bits (8 bytes) each.

 Your code should implement all of the statements in the original function. In

particular, it should include the recursive function call and include store

instructions for assignments to local variables, and may not rewrite the function

into something different like a loop that produces the same result. Other than

that, you can use any reasonable x86-64 code that follows the standard function

call and register conventions. (In particular, if a previously computed value is

still in a register when needed later in the code, you don’t need to include an

additional instruction to reload it from memory.)

 Assume the representation of a NULL pointer is an 8-byte binary zero (0) value.

 A C struct is a simple record type. It is not an object with a method table

pointer or other hidden data fields.

(You may detach this page from the exam while working,

but must turn it in with the rest of the exam.)

 CSE P 501 Exam Sample Solution 12/1/11

 Page 10 of 13

Question 5 (cont.) Code repeated for reference.

 long sum(struct node * p) { struct node {

 long first, rest; long val;

 if (p == NULL) { struct node * next;

 return 0; };

 } else {

 first = p->val;

 rest = sum(p->next);

 return first+rest;

 }

 }

(a) (0 points) Which conventions are you using (circle)

 Linux/gcc Microsoft/masm

(b) (5 points) Draw the stack frame for function sum as it would appear in an x86-64

program using the function call conventions you indicated above. Your picture should

show the locations of function parameters (if they occupy storage), local variables,

temporaries, and the stack pointer and frame pointer registers as they exist after the

function prologue has executed and has allocated the stack frame, but before any of the

statements in the body of the function have been executed. Be sure to show the numeric

offsets from the frame pointer register to each local variable and other assigned storage

locations.

 caller’s

stack frame

 return address

rbp -> old rbp or alignment pad 0

 first -8

rsp -> rest -16

Notes:

 Solutions that omitted rbp from the calling sequence and used rsp to

reference locals were fine. However, the total size of the stack frame still

needs to be a multiple of 16 to preserve alignment.

 The variables can be allocated in any order, and if rbp is not saved as part of

the calling convention the padding can be anywhere relative to the local

variables.

 Solutions that used the Microsoft/masm conventions needed to provide an

additional 32-byte argument register save area at the bottom of the stack

frame (rsp+0 to rsp+31) as part of the Microsoft calling convention.

(continued next page)

 CSE P 501 Exam Sample Solution 12/1/11

 Page 11 of 13

Question 5 (cont.) (c) (12 points) Translate function sum to x86-64 assembly language.

Be sure to follow the rules given on the first page of the question (hint: read the rules

again after you’ve finished your answer.) Code repeated for reference.

 long sum(struct node * p) { struct node {

 long first, rest; long val;

 if (p == NULL) { struct node * next;

 return 0; };

 } else {

 first = p->val;

 rest = sum(p->next);

 return first+rest;

 }

 }

This solution uses the Linux/gcc conventions and uses rbp as a frame pointer. If the

frame pointer is not used then the amount subtracted from rsp to allocate the stack

frame needs to be increased by 8. Solutions using the Microsoft/masm conventions

would be similar with the expected differences in syntax, argument registers (rcx

instead of rdi), and a larger stack frame including the argument register save area.

Obviously there are many possible solutions. This is a fairly straightforward

translation of the original code.

 sum: pushq %rbp # function prologue

 movq %rsp,%rbp

 subq $16,%rsp # allocate locals

 movq $0,%rax # initialize result to 0

 tstq %rdi,%rdi # exit if argument p is NULL

 beq exit

 movq 0(%rdi),%rax # first = p->val

 movq %rax,-8(%rbp)

 movq 8(%rdi),%rdi # set argument to p->next

 call sum # call sum(p->next)

 movq %rax,-16(%rbp) # rest = function result

 addq -8(%rbp),%rax # result = first+rest

 exit:

 movq %rbp,%rsp # return – function epilog

 popq %rbp

 ret

The movq/popq instruction pair at the end can be replaced with leave assuming

that rbp is used as a base register.

 CSE P 501 Exam Sample Solution 12/1/11

 Page 12 of 13

Question 6. (13 points) Dominators and loops. Consider the following flow graph.

(a) (9 points) For each node, list the nodes that are its dominators and its immediate

dominator. A is the initial node in the flow graph.

Node Dominators IDOM

A A –

B A, B A

C A, C A

D A, B, D B

E A, B, E B

F A, B, F B

(b) (4 points) List the back edges in the flow graph (i.e., x->y where the edge x->y is a

back edge). For each back edge, list the set of nodes that form the natural loop

associated with that back edge. (There are likely more rows in the table below than you

need, but add more if you need them.)

Back edge Nodes in the associated natural loop

C -> A A, C

E -> B B, D, E, F

A

C B

D

E

F

 CSE P 501 Exam Sample Solution 12/1/11

 Page 13 of 13

Question 7. (10 points) Register coloring. Suppose we have the following interference

graph involving five live ranges A-E.

We would like to use the graph coloring register allocation algorithm to discover if there

is a way to successfully allocate these five live ranges to three registers R1, R2, and R3.

(a) (5 points) List the nodes in the order they would be removed from the graph and

placed on the stack during the simplify phase of the graph coloring algorithm. If there is

more than one possible ordering you should list any one of them. If the simplify

algorithm stops because it is not possible to remove any of the remaining nodes from the

graph, indicate which nodes remain in the graph when the algorithm terminates.

There are many possible orderings, however no node can be removed from the

graph and added to the list if it has 3 or more neighbors remaining in the graph.

One ordering is C, A, B, D, E

(b) (5 points) Is it possible to assign the live ranges to three registers R1, R2, and R3

without interference? If so give an assignment based on your answer to part (a). If it is

not possible, explain why not.

Yes. R1: E, C; R2: D; R3: B, A

A
B

E

D

C

