* CSE P 501 — Compilers

SSA
Hal Perkins
Autumn 2009

1117 {2009 @ 2002-00 Hal Perkire & Uw C5E

-1

i Agenda

s Overview of SSA IR

= Constructing SSA graphs
= SSA-based optimizations
= Converting back from SSA form

= Source: Appel ch. 19, also an extended discussion in Cooper-
Torczon sec. 9.3

1117 {2009 (& 2002-09 Hal Perkire & LW CSE

-2

"-—-.‘__

'

Def-Use (DU) Chains \jﬁj\\

= Common dataflow analysis problem: Find
all sites where a variable is used, or find
the definition site of a variable used in an
expression

= lraditional solution: def-use chains —
additional data structure on the dataflow
graph
= Link each statement defining a variable to all
statements that use it

= Link each use of a variable to its definition

1117 {2009 (& 2002-09 Hal Perkire & LW CSE -3

i DU-Chain Drawbacks

= Expensive: if a typical variable has N
&jﬁ — uses and M definitions, the total cost is
oL K] =0 *
4 O(N * M)
= Would be nice if cost were proportional to
)5 the size of the program

L (8= 17
h‘iﬁ' s Unrelated uses of the same variable are
) mixed together

= Complicates analysis

1 M
\
v

1117 {2009 (& 2002-09 Hal Perkins & LW CSE -4

SSA: Static Single Assignment

= IR where each variable has only one

definition in the program text
= This is a single static definition, but it may

be in a loop that is executed dynamically
many times

—

O —

.

1117 {2009 & 2002-09 Hal Perkire & LW CSE -5

$ SSA in Basic Blocks

We've seen this before when looking at value numbering

= Original = SSA
ai=x+y a;i=X+y
b:=a-1 _b-1-=a1—1
a:=y+b a,:=y + by
bi=x*4 b.:=x%*4
a=a+b Ta::=+l_:)r

11172009 @ 2002-09 Hal Perkire & Lw CSE -5

= The issue is how to handle merge
points

= Solution: introduce a ®-function

= O(ay, a,)

= Meaning: a; is assigned either a,or a,
depending on which control path is
used to reach the ®-function

1117 {2009 (& 2002-09 Hal Perkire & LW CSE

L7

Example

Original SSA
b :=Mx]
a:=0
ifb <4
/ﬁ‘l
a:=b
< J
c:=a+b
11/17{2009 @ 2002-02 Hal Perkirs & 1wy CSE -3

How Does @ “Know” What to
Pick?

s It doesn't

= When we translate the program to
executable form, we can add code to copy
either value to a common location on each
incoming edge
[. For analysis, all we may need to know is

the connection of uses to definitions — no
need to "execute” anything

11172000 @ 2002-09 Hal Perkirs & W CSE L9

Example With Loop

_ Original

l||u'L ":y

o

a.

"
%

1 | B |
o O =

-,i-++
0w

=lalnlo

\L_J

return c

1117 {2009

ful}
Ny
=

c. SSA

ds .= m%'alr ai}
¢y 1= 0(cy, ¢4)
b,i=a, +1—
€ i=C +b;
Fi=bt2
Fa, <N
|
k'
return ¢

(& 2002-09 Hal Perkire & LW CSE

J

MNotes:

«ay, by, ¢y are initial
values of a, b, ¢ on
block entry

‘b, is dead - can
delete later

-¢ is live on entry -

either input parameter

or uninitialized

-10

10

Converting To SSA Form

= Basic idea
= First, add ®-functions

= Then, rename all definitions and uses of
variables by adding subscripts

1117 {2009 (& 2002-09 Hal Perkire & LW CSE 11

11

Inserting ®-Functions

= Could simply add ®-functions for every
variable at every join point(!)

s But

=« Wastes way too much space and time
= Not needed

1117 {2009 (& 2002-09 Hal Perkire & LW CSE 12

12

q Path-convergence criterion

Jw Insert a ®-function for variable a at point z
when

= There are blocks x and y, both containing
— definitions of a, and x =z y

L = There are nonempty paths from x to z and
fromytoz

= These paths have ho common nodes other
than z

= Z is not in both paths prior to the end (it may
appear in one of them)

1117 {2009 & 2002-09 Hal Perkire & LW CSE IJ-13

13

Jo

L
b=
Cw

i Details J

= The start node of the flow graph is
considered to define every variable
(even if to "undefined”)

= Each ®-function itself defines a
variable, so we need to keep adding
®-functions until things converge

1117 {2009 (& 2002-09 Hal Perkire & LW CSE -14

14

i Dominators and SSA

<~ = One property of SSA is that definitions
dominate uses; more specifically:
Q\,/ s If X := @(...,%,...) in block n, then the

(e efinition of x dominates the ith
redecessor of n

= If X is used in a non-® statement in block
n, then the definition of x dominates
block n

1117 {2009 (& 2002-09 Hal Perkire & LW CSE 15

15

i Dominance Frontier (1)

= To get a practical algorithm for placing

®-functions, we need to avoid looking
at all combinations of nodes leading
fromxtoy

= Instead, use the dominator tree in the
flow graph

1117 {2009 (& 2002-09 Hal Perkire & LW CSE

16

16

i Dominance Frontier (2)

= Definitions

s X Sf!‘ffﬂ}/ dominatesy if x dominates y and

| X=Y

| u The dominance frontier of a node X is the set
i / of all nodes w such that x dominates a

predecessor of w, but x does not strictly
dominate w

= Essentially, the dominance frontier is the
border between dominated and
undominated nodes

1117 {2009 (& 2002-09 Hal Perkire & LW CSE 17

17

1117 {2009

gﬂ"""'. £ o P 94‘1'5'
5 domintes 6, 7,8, 5
& r-ﬁflr.‘-"f’- N] 6:'?;‘3(

ﬂoﬂ-ﬁrﬂ*—ﬁf j"d"lﬂ wocde r 2 rIL:

5 ofominde pued. ol busd™
F J'HMP&IJEFI? of g, W

— &l Jer poniy

(& 2002-09 Hal Perkire & LW CSE

-15

18

Dominance Frontier Cirterion

= If a node x contains the definition of
x Vvariable a, then every node in the
dominance frontier of x needs a ©-
function for a

s Since the ®-function itself is a definition, this
- needs to be iterated until it reaches a fixed-
point

= Theorem: this algorithm places exactly the
same set of ®-functions as the path
criterion given previously

1117 {2009 (& 2002-09 Hal Perkins & LW CSE L-19

19

i Placing ®-Functions: Details

= The basic steps are:

1117 {2009

Compute the dominance frontiers for
each node in the flowgraph

Insert just enough ®-functions to satisfy
the criterion. Use a worklist algorithm to
avoid reexamining nodes unnecessarily

Walk the dominator tree and rename the
different definitions of variable a to be a;,
a,, as, ...

& 2002-09 Hal Perkire & LW CSE IJ-20

20

Efficient Dominator Tree
Computation

= Goal: SSA makes optimizing compilers
faster since we can find definitions/uses
without expensive bit-vector algorithms

= S0, need to be able to compute SSA
form quickly

s Computation of SSA from dominator
trees are efficient, but...

11172000 @ 2002-09 Hal Perkins & W CSE =21

21

i Lengauer-Taran Algorithm

= [terative set-based algorithm for finding

dominator trees is slow in worst case

[' = Lengauer-Tarjan is near linear time

= Uses depth-first spanning tree from start
node of control flow graph

s See books for details

1117 {2009 & 2002-09 Hal Perkire & LW CSE

-z

22

SSA Optimizations

= Given the SSA form, what can we do
with it?

= First, what do we know? (i.e., what
information is kept in the SSA graph?)

1117 {2009 (& 2002-09 Hal Perkire & LW CSE 23

23

i SSA Data Structures

= Statement: links to containing block, next
and previous statements, variables
defined, variables used.

= Statement kinds are: ordinary, ®-function,
fetch, store, branch

= Variable: link to definition (statement) and
use sites

= Block: List of contained statements,
ordered list of predecessors, successor(s)

1117 {2009 (& 2002-09 Hal Perkins & LW CSE 24

24

i Dead-Code Elimination

= A variable is live iff its list of uses is not
empty(!)
= Algorithm to delete dead code:

while there is some variable v with no uses

[if the statement that defines v has no
other side effects, then delete it

_ X
U:?__?.L

uses for its operand variables — which may

[. Need to remove this statement from the list of
cause those variables to become dead

1117 {2009 (& 2002-09 Hal Perkins & LW CSE -25

25

i Simple Constant Propagation

= If cis a constantin v := ¢, any use of v
can be replaced by ¢

= Then update every use of v to use constant ¢

s Ifthec’sinv:= (D(clr\,,_ch_J'_g;) are all
the same constant ¢, we can replace this
withv :=c¢

= Can also i—hcorporate copy propagation,
constant folding, and others in the same
worklist algorithm

1117 {2009 (& 2002-09 Hal Perkire & LW CSE 26

26

Simple Constant Propagation

(:W .= list of all statements in SSA program
while W is not empty
(remove some statement S from W
if S is vi=d(c, ¢, ..., ¢), replace S with vi=c
if S is vi=c ' o
delete S from the program
for each statement T that uses v
substitute c for vin T
add Ttow

1117 {2009 (& 2002-09 Hal Perkire & LW CSE

=27

27

Converting Back from SSA

= Unfortunately, real machines do not
include a @ instruction

= S0 after analysis, optimization, and
transformation, need to convert back to
a "@-less” form for execution

1117 {2009 (& 2002-09 Hal Perkins & LW CSE 25

28

i Translating ®-functions F%%m

[z [=gJ= The meaning of X := ®(Xy, Xy, ..., X,) IS
\ / “set x := X, if arriving on edge 1 set

:= X, if arriving on edge 2, etc. "
@0 for each i, insert x := x; at the end
of predecessor block |

= Rely on copy propagation and
coalescing in register allocation to
eliminate redundant moves

1117 {2009 (& 2002-09 Hal Perkins & LW CSE 29

29

SSA Wrapup

= More details in recent compiler books
(but not the new dragon book!)

= Allows efficient implementation of many
optimizations

= Used in many new compiler (e.g. llvm)
& retrofitted into many older ones (gcc)

= Not a silver bullet — some optimizations
still need non-SSA forms

1117 {2009 (& 2002-09 Hal Perkins & LW CSE 120

30

