Agenda

- Overview of SSA IR
 - Constructing SSA graphs
 - SSA-based optimizations
 - Converting back from SSA form

- Source: Appel ch. 19, also an extended discussion in Cooper-Torczon sec. 9.3
Def-Use (DU) Chains

- Common dataflow analysis problem: Find all sites where a variable is used, or find the definition site of a variable used in an expression
- Traditional solution: def-use chains – additional data structure on the dataflow graph
 - Link each statement defining a variable to all statements that use it
 - Link each use of a variable to its definition
DU-Chain Drawbacks

- Expensive: if a typical variable has N uses and M definitions, the total cost is $O(N \times M)$
 - Would be nice if cost were proportional to the size of the program
- Unrelated uses of the same variable are mixed together
 - Complicates analysis
SSA: Static Single Assignment

- IR where each variable has only one definition in the program text
 - This is a single \textit{static} definition, but it may be in a loop that is executed dynamically many times
SSA in Basic Blocks

We’ve seen this before when looking at value numbering

- Original

 \[
 \begin{align*}
 a &:= x + y \\
 b &:= a - 1 \\
 a &:= y + b \\
 b &:= x \times 4 \\
 a &:= a + b
 \end{align*}
 \]

- SSA

 \[
 \begin{align*}
 a_1 &:= x + y \\
 b_1 &:= a_1 - 1 \\
 a_2 &:= y + b_1 \\
 b_2 &:= x \times 4 \\
 a_3 &:= a_2 + b_2
 \end{align*}
 \]
Merge Points

- The issue is how to handle merge points
- Solution: introduce a Φ-function
 \[a_3 := \Phi(a_1, a_2) \]
- Meaning: a_3 is assigned either a_1 or a_2 depending on which control path is used to reach the Φ-function
Example

Original

\[\begin{align*}
 b & := M[x] \\
 a & := 0 \\
 \text{if } b < 4 \\
 a & := b \\
 c & := a + b
\end{align*} \]

SSA

\[\begin{align*}
 b_1 & := M[x0] \\
 a_1 & := 0 \\
 \text{if } b_1 < 4 \\
 a_2 & := b_1 \\
 a_3 & := \Phi(a_1, a_2) \\
 c_1 & := a_3 + b_1
\end{align*} \]
How Does Φ “Know” What to Pick?

- It doesn’t
 - When we translate the program to executable form, we can add code to copy either value to a common location on each incoming edge
 - For analysis, all we may need to know is the connection of uses to definitions – no need to “execute” anything
Example With Loop

Original

\[
a := 0 \\
b := a + 1 \\
c := c + b \\
a := b \times 2 \\
\text{if } a < N \\
\text{return } c
\]

SSA

\[
a_1 := 0 \\
a_3 := \Phi(a_1, a_2) \\
b_1 := \Phi(b_0, b_2) \\
c_2 := \Phi(c_0, c_1) \\
b_2 := a_3 + 1 \\
c_1 := c_2 + b_2 \\
a_2 := b_2 \times 2 \\
\text{if } a_2 < N \\
\text{return } c_1
\]

Notes:
- \(a_0, b_0, c_0\) are initial values of \(a, b, c\) on block entry
- \(b_1\) is dead – can delete later
- \(c\) is live on entry – either input parameter or uninitialized
Converting To SSA Form

- Basic idea
 - First, add Φ-functions
 - Then, rename all definitions and uses of variables by adding subscripts
Inserting Φ-Functions

- Could simply add Φ-functions for every variable at every join point(!)

- But
 - Wastes *way* too much space and time
 - Not needed
Path-convergence criterion

- Insert a Φ-function for variable a at point z when
 - There are blocks x and y, both containing definitions of a, and $x \neq y$
 - There are nonempty paths from x to z and from y to z
 - These paths have no common nodes other than z
 - z is not in both paths prior to the end (it may appear in one of them)
Details

- The start node of the flow graph is considered to define every variable (even if to “undefined”)
- Each Φ-function itself defines a variable, so we need to keep adding Φ-functions until things converge
Dominators and SSA

- One property of SSA is that definitions dominate uses; more specifically:
 - If $x := \Phi(..., x_i, ...) \text{ in block } n$, then the definition of x dominates the ith predecessor of n
 - If x is used in a non-Φ statement in block n, then the definition of x dominates block n
Dominance Frontier (1)

- To get a practical algorithm for placing Φ-functions, we need to avoid looking at all combinations of nodes leading from x to y
- Instead, use the dominator tree in the flow graph
Dominance Frontier (2)

- **Definitions**
 - x *strictly dominates* y if x dominates y and $x \neq y$
 - The *dominance frontier* of a node x is the set of all nodes w such that x dominates a predecessor of w, but x does not strictly dominate w

- Essentially, the dominance frontier is the border between dominated and undominated nodes
Example
Dominance Frontier Criterion

- If a node x contains the definition of variable a, then every node in the dominance frontier of x needs a Φ-function for a.
 - Since the Φ-function itself is a definition, this needs to be iterated until it reaches a fixed-point.
- Theorem: this algorithm places exactly the same set of Φ-functions as the path criterion given previously.
Placing Φ-Functions: Details

The basic steps are:

1. Compute the dominance frontiers for each node in the flowgraph
2. Insert just enough Φ-functions to satisfy the criterion. Use a worklist algorithm to avoid reexamining nodes unnecessarily
3. Walk the dominator tree and rename the different definitions of variable a to be $a_1, a_2, a_3, ...$
Efficient Dominator Tree Computation

- Goal: SSA makes optimizing compilers faster since we can find definitions/uses without expensive bit-vector algorithms.
- So, need to be able to compute SSA form quickly.
- Computation of SSA from dominator trees are efficient, but...
Lengauer-Tarjan Algorithm

- Iterative set-based algorithm for finding dominator trees is slow in worst case
- Lengauer-Tarjan is near linear time
 - Uses depth-first spanning tree from start node of control flow graph
 - See books for details
SSA Optimizations

- Given the SSA form, what can we do with it?
- First, what do we know? (i.e., what information is kept in the SSA graph?)
SSA Data Structures

- Statement: links to containing block, next and previous statements, variables defined, variables used.
 - Statement kinds are: ordinary, Φ-function, fetch, store, branch
- Variable: link to definition (statement) and use sites
- Block: List of contained statements, ordered list of predecessors, successor(s)
Dead-Code Elimination

- A variable is live iff its list of uses is not empty(!)

- Algorithm to delete dead code:

 while there is some variable v with no uses

 if the statement that defines v has no other side effects, then delete it

- Need to remove this statement from the list of uses for its operand variables – which may cause those variables to become dead
Simple Constant Propagation

- If c is a constant in $v := c$, any use of v can be replaced by c
 - Then update every use of v to use constant c
- If the c_i's in $v := \Phi(c_1, c_2, ..., c_n)$ are all the same constant c, we can replace this with $v := c$
- Can also incorporate copy propagation, constant folding, and others in the same worklist algorithm
Simple Constant Propagation

\[W := \text{list of all statements in SSA program} \]

while \(W \) is not empty

remove some statement \(S \) from \(W \)

if \(S \) is \(v := \Phi(c, c, \ldots, c) \), replace \(S \) with \(v := c \)

if \(S \) is \(v := c \)

\begin{align*}
\text{delete } S \text{ from the program} \\
\text{for each statement } T \text{ that uses } v \\
\text{substitute } c \text{ for } v \text{ in } T \\
\text{add } T \text{ to } W
\end{align*}
Converting Back from SSA

- Unfortunately, real machines do not include a Φ instruction
- So after analysis, optimization, and transformation, need to convert back to a "Φ-less" form for execution
Translating Φ-functions

- The meaning of $x := \Phi(x_1, x_2, \ldots, x_n)$ is “set $x := x_1$ if arriving on edge 1, set $x := x_2$ if arriving on edge 2, etc.”

- So, for each i, insert $x := x_i$ at the end of predecessor block i

- Rely on copy propagation and coalescing in register allocation to eliminate redundant moves
SSA Wrapup

- More details in recent compiler books (but not the new dragon book!)
- Allows efficient implementation of many optimizations
- Used in many new compiler (e.g. llvm) & retrofitted into many older ones (gcc)
- Not a silver bullet – some optimizations still need non-SSA forms