Agenda

- Loop optimizations
 - Dominators – discovering loops
 - Loop invariant calculations
 - Loop transformations
- A quick look at some memory hierarchy issues

- Largely based on material in Appel ch. 18, 21; similar material in other books
Loops

- Much of the execution time of programs is spent here
- Worth considerable effort to make loops go faster
- Want to figure out how to recognize loops and figure out how to "improve" them
What’s a Loop?

- In a control flow graph, a loop is a set of nodes S such that:
 - S includes a header node h
 - From any node in S there is a path of directed edges leading to h
 - There is a path from h to any node in S
 - There is no edge from any node outside S to any node in S other than h
Entries and Exits

- In a loop
 - An *entry node* is one with some predecessor outside the loop
 - An *exit node* is one that has a successor outside the loop
- Corollary of preceding definitions: A loop may have multiple exit nodes, but only one entry node
Reducible Flow Graphs

- In a reducible flow graph, any two loops are either nested or disjoint.
- Roughly, to discover if a flow graph is reducible, repeatedly delete edges and collapse together pairs of nodes \((x,y)\) where \(x\) is the only predecessor of \(y\).
- If the graph can be reduced to a single node it is reducible.
 - Caution: this is the "powerpoint" version of the definition – see a good compiler book for the careful details.
Example: Is this Reducible?
Example: Is this Reducible?
Reducible Flow Graphs in Practice

- Common control-flow constructs yield reducible flow graphs
 - if-then[-else], while, do, for, break(!)
- A C function without goto will always be reducible
- Many dataflow analysis algorithms are very efficient on reducible graphs, but...
- We don’t need to assume reducible control-flow graphs to handle loops
Finding Loops in Flow Graphs

- We use *dominators* for this
- Recall
 - Every control flow graph has a unique start
 node s0
 - Node x dominates node y if every path
 from s0 to y must go through x
 - A node x dominates itself
Calculating Dominator Sets

- $D[n]$ is the set of nodes that dominate n
 - $D[s0] = \{ s0 \}$
 - $D[n] = \{ n \} \cup (\bigcap_{p \in \text{pred}[n]} D[p])$
- Set up an iterative analysis as usual to solve this
 - Except initially each $D[n]$ must be all nodes in the graph – updates make these sets smaller if changed
Immediate Dominators

- Every node n has a single immediate dominator $\text{idom}(n)$
 - $\text{idom}(n)$ differs from n
 - $\text{idom}(n)$ dominates n
 - $\text{idom}(n)$ does not dominate any other dominator of n
- Fact (or, theorem): If a dominates n and b dominates n, then either a dominates b or b dominates a
 - $\therefore \text{idom}(n)$ is unique
Dominator Tree

- A *dominator tree* is constructed from a flowgraph by drawing an edge from every node in n to idom(n).
- This will be a tree. Why?
Example

Node Dom Idom

<table>
<thead>
<tr>
<th>Node</th>
<th>Dom</th>
<th>Idom</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1, 2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1, 2, 3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1, 2, 4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1, 2, 4, 5</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>1, 2, 4, 6</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>1, 2, 4, 7</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>1, 2, 4, 8</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>1, 2, 4, 8, 9</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>1, 2, 4, 8, 9, 10</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>1, 2, 4, 11</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>1, 2, 4, 7, 11, 12</td>
<td>11</td>
</tr>
</tbody>
</table>

`Loop next tree`

1. 6, 7, 11, 12
2. 3, 4
3. 5
4. 10
5. 8
6. 9

11/17/2009
Back Edges & Loops

- A flow graph edge from a node \(n \) to a node \(h \) that dominates \(n \) is a *back edge*.
- For every back edge there is a corresponding subgraph of the flow graph that is a loop.
Natural Loops

- If h dominates n and n -> h is a back edge, then the natural loop of that back edge is the set of nodes x such that:
 - h dominates x
 - There is a path from x to n not containing h
- h is the header of this loop
- Standard loop optimizations can cope with loops whether they are natural or not
Inner Loops

- Inner loops are more important for optimization because most execution time is expected to be spent there.
- If two loops share a header, it is hard to tell which one is "inner".
- Common way to handle this is to merge natural loops with the same header.
Inner (nested) loops

Suppose

- A and B are loops with headers a and b
- $a \neq b$
- b is in A

Then

- The nodes of B are a proper subset of A
- B is nested in A, or B is the inner loop
Loop-Nest Tree

- Given a flow graph G
 1. Compute the dominators of G
 2. Construct the dominator tree
 3. Find the natural loops (thus all loop-header nodes)
 4. For each loop header h, merge all natural loops of h into a single loop: loop[h]
 5. Construct a tree of loop headers s.t. h1 is above h2 if h2 is in loop[h1]
Loop-Nest Tree details

- Leaves of this tree are the innermost loops
- Need to put all non-loop nodes somewhere
 - Convention: lump these into the root of the loop-nest tree
Loop Preheader

- Often we need a place to park code right before the beginning of a loop
- Easy if there is a single node preceding the loop header h
 - But this isn’t the case in general
- So insert a *preheader* node p
 - Include an edge p→h
 - Change all edges x→h to be x→p
Loop-Invariant Computations

- Idea: If \(x := a_1 \text{ op } a_2 \) always does the same thing each time around the loop, we’d like to hoist it and do it once outside the loop.

- But can’t always tell if \(a_1 \) and \(a_2 \) will have the same value.
 - Need a conservative (safe) approximation.
Loop-Invariant Computations

- $d: x := a_1 \text{ op } a_2$ is loop-invariant if for each a_i
 - a_i is a constant, or
 - All the definitions of a_i that reach d are outside the loop, or
 - Only one definition of a_i reaches d, and that definition is loop invariant

- Use this to build an iterative algorithm
 - Base cases: constants and operands defined outside the loop
 - Then: repeatedly find definitions with loop-invariant operands
Hoisting

- Assume that \(d : x := a_1 \text{ op } a_2 \) is loop invariant. We can hoist it to the loop preheader if
 - \(d \) dominates all loop exits where \(x \) is live-out, and
 - There is only one definition of \(x \) in the loop, and
 - \(x \) is not live-out of the loop preheader
- Need to modify this if \(a_1 \text{ op } a_2 \) could have side effects or raise an exception
Hoisting: Possible?

- Example 1
 \[\begin{align*}
 L0: & t := 0 \\
 L1: & i := i + 1 \\
 & t := a \text{ op } b \\
 & M[i] := t \\
 & \text{if } i < n \text{ goto L1} \\
 L2: & x := t
 \end{align*}\]

- Example 2
 \[\begin{align*}
 L0: & t := 0 \\
 L1: & \text{if } i \geq n \text{ goto L2} \\
 & i := i + 1 \\
 & t := a \text{ op } b \\
 & M[i] := t \\
 & \text{goto L1} \\
 L2: & x := t
 \end{align*}\]
Hoisting: Possible?

- Example 3

 L0: \(t := 0 \)

 L1: \(i := i + 1 \)

 \(t := a \ \text{op} \ b \)

 \(M[i] := t \)

 \(t := 0 \)

 \(M[j] := t \)

 if \(i < n \) goto L1

 L2: \(x := t \)

- Example 4

 L0: \(t := 0 \)

 L1: \(M[j] := t \)

 \(i := i + 1 \)

 \(t := a \ \text{op} \ b \)

 \(M[i] := t \)

 if \(i < n \) goto L1

 L2: \(x := t \)
Induction Variables

- Suppose inside a loop
 - Variable i is incremented or decremented
 - Variable j is set to i*c+d where c and d are loop-invariant
- Then we can calculate j’s value without using i
 - Whenever i is incremented by a, increment j by c*a
Example

- **Original**

 \[
 \begin{align*}
 s & := 0 \\
 - i & := 0 \\
 \text{L1: if } i & \geq n \text{ goto L2} \\
 - j & := i*4 \\
 - k & := j+a \\
 - x & := M[k] \\
 - s & := s+x \\
 - i & := i+1 \\
 \text{goto L1}
 \end{align*}
 \]

- **Do**

 - Induction-variable analysis to discover \(i \) and \(j \) are related induction variables
 - Strength reduction to replace \(*4 \) with an addition
 - Induction-variable elimination to replace \(i \geq n \)
 - Assorted copy propagation
Result

- **Original**

  ```plaintext
  s := 0
  i := 0
  L1: if i \geq n goto L2
  j := i*4
  k := j+a
  x := M[k]
  s := s+x
  i := i+1
  goto L1
  L2:
  ```

- **Transformed**

  ```plaintext
  s := 0
  k' := a
  b := n*4
  c := a+b
  L1: if k' \geq c goto L2
  x := M[k']
  s := s+x
  k' := k'+4
  goto L1
  L2:
  ```

Details are somewhat messy – see your favorite compiler book.
Basic and Derived Induction Variables

- Variable i is a **basic induction variable** in loop L with header h if the only definitions of i in L have the form $i:=i\pm c$ where c is loop invariant.

- Variable k is a **derived induction variable** in L if:
 - There is only one definition of k in L of the form $k:=j\times c$ or $k:=j+d$ where j is an induction variable and c, d are loop-invariant, and
 - if j is a derived variable in the family of i, then:
 - The only definition of j that reaches k is the one in the loop, and
 - there is no definition of i on any path between the definition of j and the definition of k.
Optimizing Induction Variables

- Strength reduction: if a derived induction variable is defined with \(j = i \times c \), try to replace it with an addition inside the loop.
- Elimination: after strength reduction some induction variables are not used or are only compared to loop-invariant variables; delete them.
- Rewrite comparisons: If a variable is used only in comparisons against loop-invariant variables and in its own definition, modify the comparison to use a related induction variable.
Loop Unrolling

- If the body of a loop is small, most of the time is spent in the “increment and test” code

- Idea: reduce overhead by unrolling – put two or more copies of the loop body inside the loop
Loop Unrolling

- Basic idea: Given loop L with header node h and back edges $s_i \rightarrow h$
 1. Copy the nodes to make loop L' with header h' and back edges $s_i' \rightarrow h'$
 2. Change all back edges in L from $s_i \rightarrow h$ to $s_i \rightarrow h'$
 3. Change all back edges in L' from $s_i' \rightarrow h'$ to $s_i' \rightarrow h$
Unrolling Algorithm Results

Before
L1: \(x := M[i] \)
 \(s := s + x \)
 \(i := i + 4 \)
 if \(i < n \) goto L1 else L2
L2:

After
L1: \(x := M[i] \)
 \(s := s + x \)
 \(i := i + 4 \)
 if \(i < n \) goto L1' else L2
L1': \(x := M[i] \)
 \(s := s + x \)
 \(i := i + 4 \)
 if \(i < n \) goto L1 else L2
L2:
Hmmm....

- Not so great – just code bloat
- But: use induction variables and various loop transformations to clean up
After Some Optimizations

- **Before**

  ```
  L1: x := M[i]  
  s := s + x  
  i := i + 4  
  if i<n goto L1' else L2  
  
  L1': x := M[i]  
  s := s + x  
  i := i + 4  
  if i<n goto L1 else L2  
  
  L2:  
  ```

- **After**

  ```
  L1: x := M[i]  
  s := s + x  
  x := M[i+4]  
  i := i + 8  
  if i<n goto L1 else L2  
  
  L2:  
  ```
Still Broken...

- But in a different, better(?) way
- Good code, but only correct if original number of loop iterations was even
- Fix: add an epilogue to handle the “odd” leftover iteration
Fixed

- **Before**

 L1: \(x := M[i] \)

 \(s := s + x \)

 \(x := M[i+4] \)

 \(s := s + x \)

 \(i := i + 8 \)

 if \(i < n \) goto L1 else L2

 L2:

- **After**

 if \(i < n-8 \) goto L1 else L2

 L1: \(x := M[i] \)

 \(s := s + x \)

 \(x := M[i+4] \)

 \(s := s + x \)

 \(i := i + 8 \)

 if \(i < n-8 \) goto L1 else L2

 L2: \(x := M[i] \)

 \(s := s+x \)

 \(i := i+4 \)

 if \(i < n \) goto L2 else L3

 L3:
Postscript

- This example only unrolls the loop by a factor of 2
- More typically, unroll by a factor of K
 - Then need an epilogue that is a loop like the original that iterates up to $K-1$ times
Memory Hierarchies

- One of the great triumphs of computer design
- Effect is a large, fast memory
- Reality is a series of progressively larger, slower, cheaper stores, with frequently accessed data automatically staged to faster storage (cache, main storage, disk)
- Programmer/compiler typically treats it as one large store. Bug or feature?
Memory Issues (review)

- Byte load/store is often slower than whole (physical) word load/store
 - Unaligned access is often extremely slow
- Temporal locality: accesses to recently accessed data will usually find it in the (fast) cache
- Spatial locality: accesses to data near recently used data will usually be fast
 - "near" = in the same cache block
- But – alternating accesses to blocks that map to the same cache block will cause thrashing
Data Alignment

- Data objects (structs) often are similar in size to a cache block (≈ 8 words)
 - Better if objects don’t span blocks
- Some strategies
 - Allocate objects sequentially; bump to next block boundary if useful
 - Allocate objects of same common size in separate pools (all size-2, size-4, etc.)
- Tradeoff: speed for some wasted space
Instruction Alignment

- Align frequently executed basic blocks on cache boundaries (or avoid spanning cache blocks)
- Branch targets (particularly loops) may be faster if they start on a cache line boundary
- Try to move infrequent code (startup, exceptions) away from hot code
- Optimizing compiler should have a basic-block ordering phase (& maybe even loader)
Loop Interchange

- Watch for bad cache patterns in inner loops; rearrange if possible

- Example

  ```
  for (i = 0; i < m; i++)
      for (j = 0; j < n; j++)
          for (k = 0; k < p; k++)
              a[i,k,j] = b[i,j-1,k] + b[i,j,k] + b[i,j+1,k]
  ```

- b[i,j+1,k] is reused in the next two iterations, but will have been flushed from the cache by the k loop
Loop Interchange

- Solution for this example: interchange j and k loops

 for (i = 0; i < m; i++)
 for (k = 0; k < p; k++)
 for (j = 0; j < n; j++)

 a[i,k,j] = b[i,j-1,k] + b[i,j,k] + b[i,j+1,k]

- Now b[i,j+1,k] will be used three times on each cache load
- Safe here because loop iterations are independent
Loop Interchange

- Need to construct a data-dependency graph showing information flow between loop iterations.
- For example, iteration \((j,k)\) depends on iteration \((j',k')\) if \((j',k')\) computes values used in \((j,k)\) or stores values overwritten by \((j,k)\).
- If there is a dependency and loops are interchanged, we could get different results – so can’t do it.
Blocking

- Consider matrix multiply
  ```
  for (i = 0; i < n; i++)
    for (j = 0; j < n; j++) {
      c[i,j] = 0.0;
      for (k = 0; k < n; k++)
        c[i,j] = c[i,j] + a[i,k]*b[k,j]
    }
  ```

- If a, b fit in the cache together, great!
- If they don’t, then every b[k,j] reference will be a cache miss
- Loop interchange (i<->j) won’t help; then every a[i,k] reference would be a miss
Blocking

- Solution: reuse rows of A and columns of B while they are still in the cache
- Assume the cache can hold $2c^n$ matrix elements ($1 < c < n$)
- Calculate $c \times c$ blocks of C using c rows of A and c columns of B
Blocking

- Calculating $c \times c$ blocks of C

  ```
  for (i = i0; i < i0+c; i++)
    for (j = j0; j < j0+c; j++) {
      c[i,j] = 0.0;
      for (k = 0; k < n; k++)
        c[i,j] = c[i,j] + a[i,k]*b[k,j]
    }
  ```
Blocking

- Then nest this inside loops that calculate successive $c \times c$ blocks

```c
for (i0 = 0; i0 < n; i0 += c) {
    for (j0 = 0; j0 < n; j0 += c) {
        for (i = i0; i < i0 + c; i++) {
            for (j = j0; j < j0 + c; j++) {
                c[i,j] = 0.0;
                for (k = 0; k < n; k++)
                    c[i,j] = c[i,j] + a[i,k]*b[k,j];
            }
        }
    }
}
```
Parallelizing Code

- There is a long literature about how to rearrange loops for better locality and to detect parallelism
- Some starting points
 - New edition of *Dragon book*, ch. 11
 - Allen & Kennedy *Optimizing Compilers for Modern Architectures*
 - Wolfe, *High-Performance Compilers for Parallel Computing*