Agenda

- Loop optimizations
 - Dominators – discovering loops
 - Loop invariant calculations
 - Loop transformations

- A quick look at some memory hierarchy issues

- Largely based on material in Appel ch. 18, 21; similar material in other books
Loops

- Much of the execution time of programs is spent here
- \[\therefore \] worth considerable effort to make loops go faster
- \[\therefore \] want to figure out how to recognize loops and figure out how to “improve” them
What’s a Loop?

- In a control flow graph, a loop is a set of nodes S such that:
 - S includes a header node h
 - From any node in S there is a path of directed edges leading to h
 - There is a path from h to any node in S
 - There is no edge from any node outside S to any node in S other than h
Entries and Exits

- In a loop
 - An *entry node* is one with some predecessor outside the loop
 - An *exit node* is one that has a successor outside the loop
- Corollary of preceding definitions: A loop may have multiple exit nodes, but only one entry node
Reducible Flow Graphs

- In a reducible flow graph, any two loops are either nested or disjoint.
- Roughly, to discover if a flow graph is reducible, repeatedly delete edges and collapse together pairs of nodes \((x,y)\) where \(x\) is the only predecessor of \(y\).
- If the graph can be reduced to a single node it is reducible.
 - Caution: this is the “powerpoint” version of the definition – see a good compiler book for the careful details.
Example: Is this Reducible?
Example: Is this Reducible?
Reducible Flow Graphs in Practice

- Common control-flow constructs yield reducible flow graphs
 - if-then[-else], while, do, for, break(!)
- A C function without goto will always be reducible
- Many dataflow analysis algorithms are very efficient on reducible graphs, but...
- We don’t need to assume reducible control-flow graphs to handle loops
We use *dominators* for this.

Recall

- Every control flow graph has a unique start node s_0
- Node x dominates node y if every path from s_0 to y must go through x
- A node x dominates itself
Calculating Dominator Sets

- $D[n]$ is the set of nodes that dominate n
 - $D[s0] = \{ s0 \}$
 - $D[n] = \{ n \} \cup (\bigcap_{p \in \text{pred}[n]} D[p])$
- Set up an iterative analysis as usual to solve this
 - Except initially each $D[n]$ must be all nodes in the graph – updates make these sets smaller if changed
Immediate Dominators

- Every node \(n \) has a single *immediate dominator* \(\text{idom}(n) \)
 - \(\text{idom}(n) \) differs from \(n \)
 - \(\text{idom}(n) \) dominates \(n \)
 - \(\text{idom}(n) \) does not dominate any other dominator of \(n \)

- Fact (er, theorem): If \(a \) dominates \(n \) and \(b \) dominates \(n \), then either \(a \) dominates \(b \) or \(b \) dominates \(a \)
 - \(\therefore \) \(\text{idom}(n) \) is unique
Dominator Tree

- A dominator tree is constructed from a flowgraph by drawing an edge from every node in \(n \) to \(\text{idom}(n) \)
 - This will be a tree. Why?
Example
A flow graph edge from a node \(n \) to a node \(h \) that dominates \(n \) is a *back edge*.

For every back edge there is a corresponding subgraph of the flow graph that is a loop.
Natural Loops

- If h dominates n and n->h is a back edge, then the natural loop of that back edge is the set of nodes x such that
 - h dominates x
 - There is a path from x to n not containing h
- h is the header of this loop
- Standard loop optimizations can cope with loops whether they are natural or not
Inner Loops

- Inner loops are more important for optimization because most execution time is expected to be spent there.
- If two loops share a header, it is hard to tell which one is "inner".
 - Common way to handle this is to merge natural loops with the same header.
Inner (nested) loops

- Suppose
 - A and B are loops with headers a and b
 - \(a \neq b \)
 - b is in A

- Then
 - The nodes of B are a proper subset of A
 - B is nested in A, or B is the *inner loop*
Loop-Nest Tree

- Given a flow graph G
 1. Compute the dominators of G
 2. Construct the dominator tree
 3. Find the natural loops (thus all loop-header nodes)
 4. For each loop header h, merge all natural loops of h into a single loop: loop[h]
 5. Construct a tree of loop headers s.t. h1 is above h2 if h2 is in loop[h1]
Loop-Nest Tree details

- Leaves of this tree are the innermost loops
- Need to put all non-loop nodes somewhere
 - Convention: lump these into the root of the loop-nest tree
Example
Loop Preheader

- Often we need a place to park code right before the beginning of a loop
- Easy if there is a single node preceding the loop header \(h \)
 - But this isn’t the case in general
- So insert a \textit{preheader} node \(p \)
 - Include an edge \(p \rightarrow h \)
 - Change all edges \(x \rightarrow h \) to be \(x \rightarrow p \)
Loop-Invariant Computations

- Idea: If $x := a_1 \text{ op } a_2$ always does the same thing each time around the loop, we’d like to *hoist* it and do it once outside the loop.

- But can’t always tell if a_1 and a_2 will have the same value.
 - Need a conservative (safe) approximation.
Loop-Invariant Computations

- d: \(x := a_1 \text{ op } a_2 \) is loop-invariant if for each \(a_i \)
 - \(a_i \) is a constant, or
 - All the definitions of \(a_i \) that reach \(d \) are outside the loop, or
 - Only one definition of \(a_i \) reaches \(d \), and that definition is loop invariant

- Use this to build an iterative algorithm
 - Base cases: constants and operands defined outside the loop
 - Then: repeatedly find definitions with loop-invariant operands
Hoisting

- Assume that \(d: x := a_1 \text{ op } a_2 \) is loop invariant. We can hoist it to the loop preheader if
 - \(d \) dominates all loop exits where \(x \) is live-out, and
 - There is only one definition of \(x \) in the loop, and
 - \(x \) is not live-out of the loop preheader
- Need to modify this if \(a_1 \text{ op } a_2 \) could have side effects or raise an exception
Hoisting: Possible?

- **Example 1**

 L0: \(t := 0 \)

 L1: \(i := i + 1 \)

 \(t := a \text{ op } b \)

 \(M[i] := t \)

 if \(i < n \) goto L1

 L2: \(x := t \)

- **Example 2**

 L0: \(t := 0 \)

 L1: \(\text{if } i \geq n \text{ goto L2} \)

 \(i := i + 1 \)

 \(t := a \text{ op } b \)

 \(M[i] := t \)

 goto L1

 L2: \(x := t \)
Hoisting: Possible?

- **Example 3**

 L0: \(t := 0 \)

 L1: \(i := i + 1 \)

 \(t := a \ op \ b \)

 \(M[i] := t \)

 \(t := 0 \)

 \(M[j] := t \)

 if \(i < n \) goto L1

 L2: \(x := t \)

- **Example 4**

 L0: \(t := 0 \)

 L1: \(M[j] := t \)

 \(i := i + 1 \)

 \(t := a \ op \ b \)

 \(M[i] := t \)

 if \(i < n \) goto L1

 L2: \(x := t \)
Induction Variables

- Suppose inside a loop
 - Variable i is incremented or decremented
 - Variable j is set to i*c+d where c and d are loop-invariant
- Then we can calculate j’s value without using i
 - Whenever i is incremented by a, increment j by c*a
Example

- Original

  ```
  s := 0
  i := 0
  L1: if i ≥ n goto L2
  j := i*4
  k := j+a
  x := M[k]
  s := s+x
  i := i+1
  goto L1
  L2:
  ```

- Do

  ```
  Induction-variable analysis to discover i and j are related induction variables
  Strength reduction to replace *4 with an addition
  Induction-variable elimination to replace i ≥ n
  Assorted copy propagation
  ```
Result

- **Original**

  ```plaintext
  s := 0
  i := 0
  L1: if i ≥ n goto L2
  j := i*4
  k := j+a
  x := M[k]
  s := s+x
  i := i+1
  goto L1
  L2:
  ```

- **Transformed**

  ```plaintext
  s := 0
  k' = a
  b = n*4
  c = a+b
  L1: if k' ≥ c goto L2
  x := M[k']
  s := s+x
  k' := k'+4
  goto L1
  L2:
  ```

Details are somewhat messy – see your favorite compiler book
Basic and Derived Induction Variables

- Variable i is a *basic induction variable* in loop L with header h if the only definitions of i in L have the form $i := i \pm c$ where c is loop invariant.

- Variable k is a *derived induction variable* in L if:
 - There is only one definition of k in L of the form $k := j \times c$ or $k := j + d$ where j is an induction variable and c, d are loop-invariant, and
 - if j is a derived variable in the family of i, then:
 - The only definition of j that reaches k is the one in the loop, and
 - there is no definition of i on any path between the definition of j and the definition of k.
Optimizing Induction Variables

- Strength reduction: if a derived induction variable is defined with $j := i \times c$, try to replace it with an addition inside the loop.

- Elimination: after strength reduction some induction variables are not used or are only compared to loop-invariant variables; delete them.

- Rewrite comparisons: If a variable is used only in comparisons against loop-invariant variables and in its own definition, modify the comparison to use a related induction variable.
Loop Unrolling

- If the body of a loop is small, most of the time is spent in the “increment and test” code.

- Idea: reduce overhead by *unrolling* – put two or more copies of the loop body inside the loop.
Loop Unrolling

- Basic idea: Given loop L with header node h and back edges $s_i \rightarrow h$
 1. Copy the nodes to make loop L' with header h' and back edges $s_i' \rightarrow h'$
 2. Change all backedges in L from $s_i \rightarrow h$ to $s_i \rightarrow h'$
 3. Change all back edges in L' from $s_i' \rightarrow h'$ to $s_i' \rightarrow h$
Unrolling Algorithm Results

Before

L1: x := M[i]
 s := s + x
 i := i + 4
 if i<n goto L1 else L2

L2:

After

L1: x := M[i]
 s := s + x
 i := i + 4
 if i<n goto L1’ else L2

L1’: x := M[i]
 s := s + x
 i := i + 4
 if i<n goto L1 else L2

L2:
Hmmmm....

- Not so great – just code bloat
- But: use induction variables and various loop transformations to clean up
After Some Optimizations

Before

L1: x := M[i]
 s := s + x
 i := i + 4
 if i<n goto L1' else L2
L1': x := M[i]
 s := s + x
 i := i + 4
 if i<n goto L1 else L2
L2:

After

L1: x := M[i]
 s := s + x
 x := M[i+4]
 i := i + 8
 if i<n goto L1 else L2
L2:
Still Broken...

- But in a different, better(?) way
- Good code, but only correct if original number of loop iterations was even
- Fix: add an epilogue to handle the “odd” leftover iteration
Fixed

Before

L1: \(x := M[i] \)
\(s := s + x \)
\(x := M[i+4] \)
\(s := s + x \)
\(i := i + 8 \)
if \(i < n \) goto L1 else L2

L2:

After

if \(i < n-8 \) goto L1 else L2

L1: \(x := M[i] \)
\(s := s + x \)
\(x := M[i+4] \)
\(s := s + x \)
\(i := i + 8 \)
if \(i < n-8 \) goto L1 else L2

L2: \(x := M[i] \)
\(s := s + x \)
\(i := i + 4 \)
if \(i < n \) goto L2 else L3

L3:
This example only unrolls the loop by a factor of 2

More typically, unroll by a factor of \(K \)

- Then need an epilogue that is a loop like the original that iterates up to \(K-1 \) times
Memory Heirarchies

- One of the great triumphs of computer design
- Effect is a large, fast memory
- Reality is a series of progressively larger, slower, cheaper stores, with frequently accessed data automatically staged to faster storage (cache, main storage, disk)
- Programmer/compiler typically treats it as one large store. Bug or feature?
Memory Issues (review)

- Byte load/store is often slower than whole (physical) word load/store
 - Unaligned access is often extremely slow

- Temporal locality: accesses to recently accessed data will usually find it in the (fast) cache

- Spatial locality: accesses to data near recently used data will usually be fast
 - “near” = in the same cache block

- But – alternating accesses to blocks that map to the same cache block will cause thrashing
Data Alignment

- Data objects (structs) often are similar in size to a cache block (∼ 8 words)
 - Better if objects don’t span blocks

- Some strategies
 - Allocate objects sequentially; bump to next block boundary if useful
 - Allocate objects of same common size in separate pools (all size-2, size-4, etc.)

- Tradeoff: speed for some wasted space
Instruction Alignment

- Align frequently executed basic blocks on cache boundaries (or avoid spanning cache blocks)
- Branch targets (particularly loops) may be faster if they start on a cache line boundary
- Try to move infrequent code (startup, exceptions) away from hot code
- Optimizing compiler should have a basic-block ordering phase (& maybe even loader)
Loop Interchange

- Watch for bad cache patterns in inner loops; rearrange if possible

Example

```
for (i = 0; i < m; i++)
    for (j = 0; j < n; j++)
        for (k = 0; k < p; k++)
            a[i,k,j] = b[i,j-1,k] + b[i,j,k] + b[i,j+1,k]
```

- `b[i,j+1,k]` is reused in the next two iterations, but will have been flushed from the cache by the k loop
Loop Interchange

- Solution for this example: interchange j and k loops

  ```
  for (i = 0; i < m; i++)
    for (k = 0; k < p; k++)
      for (j = 0; j < n; j++)
        a[i,k,j] = b[i,j-1,k] + b[i,j,k] + b[i,j+1,k]
  ```

- Now b[i,j+1,k] will be used three times on each cache load

- Safe here because loop iterations are independent
Loop Interchange

Need to construct a data-dependency graph showing information flow between loop iterations.

For example, iteration \((j,k)\) depends on iteration \((j',k')\) if \((j',k')\) computes values used in \((j,k)\) or stores values overwritten by \((j,k)\).

If there is a dependency and loops are interchanged, we could get different results – so can’t do it.
Blocking

- Consider matrix multiply

  ```c
  for (i = 0; i < n; i++)
    for (j = 0; j < n; j++) {
      c[i,j] = 0.0;
      for (k = 0; k < n; k++)
        c[i,j] = c[i,j] + a[i,k]*b[k,j]
    }
  ```

- If a, b fit in the cache together, great!
- If they don’t, then every b[k,j] reference will be a cache miss
- Loop interchange (i<->j) won’t help; then every a[i,k] reference would be a miss
Blocking

- Solution: reuse rows of A and columns of B while they are still in the cache
- Assume the cache can hold $2c*n$ matrix elements ($1 < c < n$)
- Calculate $c \times c$ blocks of C using c rows of A and c columns of B
Blocking

- Calculating $c \times c$ blocks of C

 for $i = i0; i < i0+c; i++$

 for $j = j0; j < j0+c; j++$ {

 $c[i,j] = 0.0$

 for $k = 0; k < n; k++$

 $c[i,j] = c[i,j] + a[i,k]*b[k,j]$

 }
Blocking

- Then nest this inside loops that calculate successive $c \times c$ blocks

```plaintext
for (i0 = 0; i0 < n; i0+=c)
  for (j0 = 0; j0 < n; j0+=c)
    for (i = i0; i < i0+c; i++)
      for (j = j0; j < j0+c; j++) {
        c[i,j] = 0.0;
        for (k = 0; k < n; k++)
          c[i,j] = c[i,j] + a[i,k]*b[k,j]
      }
```
Parallelizing Code

- There is a long literature about how to rearrange loops for better locality and to detect parallelism
- Some starting points
 - New edition of *Dragon book*, ch. 11
 - Allen & Kennedy *Optimizing Compilers for Modern Architectures*
 - Wolfe, *High-Performance Compilers for Parallel Computing*