Liveness Analysis – an example from last week

- Recall: A variable is *live* on an edge if there is a path from that edge to a use that does not go through any definition
- In a block, a variable is
 - *Live-in* if it is live on any in-edge
 - *Live-out* if it is live on any out-edge
Example (1 stmt per block)

- Code

 a := 0
 L: b := a+1
 c := c+b
 a := b*2
 if a < N goto L
 return c

- Flowchart:

 1: a := 0
 2: b := a+1
 3: c := c+b
 4: a := b+2
 5: a < N
 6: return c
Liveness Analysis Sets

- For each block b
 - use[b] = variable used in b before any def
 - def[b] = variable defined in b & not killed
 - in[b] = variables live on entry to b
 - out[b] = variables live on exit from b

- Information flows from the “future” to the “past”
Dataflow equation

- Given the preceding definitions, we have
 \[\text{in}[b] = \text{use}[b] \cup (\text{out}[b] - \text{def}[b]) \]
 \[\text{out}[b] = \bigcup_{s \in \text{succ}[b]} \text{in}[s] \]

- Algorithm
 - Set \(\text{in}[b] = \text{out}[b] = \emptyset \)
 - Update \text{in}, \text{out} until no change

- Evaluation order: back to front is best given information flow
Calculation

<table>
<thead>
<tr>
<th>Block (Start)</th>
<th>Use</th>
<th>Def</th>
<th>Out In</th>
<th>Out In</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>c</td>
<td>-</td>
<td>- c</td>
<td>- c</td>
</tr>
<tr>
<td>5</td>
<td>a</td>
<td>-</td>
<td>c ac</td>
<td>ac ac</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>a</td>
<td>ac bc</td>
<td>ac bc</td>
</tr>
<tr>
<td>3</td>
<td>cb</td>
<td>c</td>
<td>bc bc</td>
<td>bc bc</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>b</td>
<td>bc ac</td>
<td>bc ac</td>
</tr>
<tr>
<td>1</td>
<td>- a</td>
<td>ac c</td>
<td>ac c</td>
<td>ac c</td>
</tr>
</tbody>
</table>

1: a := 0
2: b := a + 1
3: c := c + b
4: a := b + 2
5: a < N
6: return c
A few optimizing transformations

- A few examples with a bit more detail than last time....
Classic Common-Subexpression Elimination

- In a statement \(s: t := x \text{ op } y \), if \(x \text{ op } y \) is *available* at \(s \) then it need not be recomputed.

- Analysis: compute *reaching expressions* i.e., statements \(n: v := x \text{ op } y \) such that the path from \(n \) to \(s \) does not compute \(x \text{ op } y \) or define \(x \) or \(y \).
Classic CSE

- If \(x \text{ op } y \) is defined at \(n \) and reaches \(s \)
 - Create new temporary \(w \)
 - Rewrite \(n \) as
 \[
 \begin{align*}
 n &: w := x \text{ op } y \\
 n' &: v := w
 \end{align*}
 \]
 - Modify statement \(s \) to be
 \[
 s &: t := w
 \]

(Rely on copy propagation to remove extra assignments if not really needed)
Constant Propagation

- Suppose we have
 - Statement $d: t := c$, where c is constant
 - Statement n that uses t
- If d reaches n and no other definitions of t reach n, then rewrite n to use c instead of t
Copy Propagation

- Similar to constant propagation
- Setup:
 - Statement $d: t := z$
 - Statement n uses t
- If d reaches n and no other definition of t reaches n, and there is no definition of z on any path from d to n, then rewrite n to use z instead of t
Copy Propagation Tradeoffs

- Downside is that this can increase the lifetime of variable z and increase need for registers or memory traffic
 - Not worth doing if only reason is to eliminate copies – let the register allocate deal with that
- But it can expose other optimizations, e.g.,
 - $a := y + z$
 - $u := y$
 - $c := u + z$
- After copy propagation we can recognize the common subexpression
Dead Code Elimination

- If we have an instruction
 \[s: a := b \text{ op } c \]
 and \(a \) is not live-out after \(s \), then \(s \) can be eliminated

- Provided it has no implicit side effects that are visible (output, exceptions, etc.)
Lazy Code Motion (LCM)

- Also known as partial-redundancy elimination
- More recent alternative to classic CSE and loop-invariant code motion
Partial Redundancy

- Informally, an expression is *partially redundant* if it is done more than once on some path through the flowgraph.
- More specifically, a computation is partially redundant at point p if it occurs on some, but not all, paths that reach p.
- Idea: convert partially redundant expressions to fully redundant, then eliminate it, which moves it out of a loop or avoids recomputing it on some paths.
Example

\[\begin{align*}
 b & \leftarrow b + 1 \\
 a & \leftarrow b \times c \\
 \Rightarrow & \\
 b & \leftarrow b + 1 \\
 a & \leftarrow b \times c \\
 \end{align*} \]