* CSE P 501 — Compilers

Dataflow Analysis
Hal Perkins
Autumn 2009

11102009 @ 2002-00 Hal Perkire & Uw C5E

R-1

Agenda

= Initial example: dataflow analysis for
common subexpression elimination

= Other analysis problems that work in
the same framework

111042009 (& 2002-09 Hal Perkire & LW CSE

R-2

The Story So Far...

= Redundant expression elimination

/= Local Value Numbering \\

/= Superlocal Value Numbering /R\

« Extends VN to EBBs 7
= SSA-like namespace

= Dominator VN Technique (DVNT)
= All of these propagate along forward edges

= None are global
= In particular, can’t handle back edges (loops)

111042009 (& 2002-09 Hal Perkire & LW CSE

R-3

Dominator Value Numbering

A
Most sophisticated i aa”:bbﬂ
algarlthm so far _,#"’"D : E\
Still misses some = G
i Po =€p Tty Ch =aq + by
OPPATUILLES rg=2cp+ g r =cq+ dg
Can't handle loops =
G

rz = ':I:'(rn,rlj WD 5 I:D * dD

e T ¥y =gy + 1y
11f10f2009 @ 2002-09 Hal Perking & Ly CSE F-4

Available Expressions

= Goal: use dataflow analysis to find
common subexpressions whose range
spans basic blocks

= Idea: calculate avaiable expressions at

beginning of each basic block

= Avoid re-evaluation of an available
expression — use a copy operation

111042009 (& 2002-09 Hal Perkins & LW CSE

R-5

i “Available” and Other Terms

= An expression e is defined at point pin the
~ CFGiif its value is computed at p
)7 7% Sometimes called definition site
; Va An expression e is killed at point p if one of

T its operands is defined at p

x=yrt. s Sometimes called &/ site

= An expression e is available at point pif
every path leading to p contains a prior
definition of e and e is not killed between
that definition and p

111042009 (& 2002-09 Hal Perkire & LW CSE R-G

=
||'|I.-||_G'|!.!L'-G.1:.d-u[|.‘

i Available Expression Sets

= For each block 5, define

on entry to &
] «(NKILL(b) — the set of expressions not kille

=|AVAIL(b) 3- the set of expressions available

d

-) in b
\.EDEng) — the set of expressions defined in
b and not subsequently killed in 5

111042009 (& 2002-09 Hal Perkire & LW CSE

R-7

Computing Available?
Expressions

s AVAIL(b) is the set
AVAIL(b) = e preds(b) (DEF(X) -

(AVAIL(x) ~ NKILL(x)))
= preds(b) is the set of b’'s predecessors in
the control flow graph

= This gives a system of simultaneous
equations — a dataflow problem

11/10/2009 @ 2002-09 Hal Perkire & W CSE R-2

Name Space Issues

= In previous value-numbering
algorithms, we used a SSA-like
renaming to keep track of versions

= In global dataflow problems, we use the
original namespace

= The KILL information captures when a
value is no longer available

111042009 (& 2002-09 Hal Perkire & LW CSE R-9

GCSE with Available
Expressions

= For each block b, compute DEF(b) and
NKILL(b)

[= For each block b, compute AVAIL(b)

= For each block b, value number the
block starting with AVAIL(b)

= Replace expressions in AVAIL(b) with
references to the previously computed
values

11/10/2009 @ 2002-09 Hal Perkire & W CSE F-10

10

Global CSE Replacement

= After analysis and before
transformation, assign a global name to
each expression e by hashing on e

= During transformation step
= At each evaluation of e insert copy
nﬂe) =&
= At each reference to ¢, replace e with
name(e)

111042009 (& 2002-09 Hal Perkins & LW CSE R-11

11

Analysis

= Main problem — inserts extraneous copies at
all definitions and uses of every e that
appears in any AVAIL(b)

= But the extra copies are dead and easy to remove

= Useful copies often coalesce away when registers
and temporaries are assigned

= Common strategy

s Insert copies that might be useful
= Let dead code elimination sort it out later

111042009 (& 2002-09 Hal Perkire & LW CSE R-12

12

Computing Available
Expressions

= Big Picture

v = Build control-flow graph

~ = Calculate initial local data — DERb) and
NKILL(b)

= This only needs to be done once

_u Iteratively calculate AVAIL(b) by repeatedly
evaluating equations until nothing changes

= Another fixed-point algorithm

11/10/2009 @ 2002-09 Hal Perkins & W CSE R-13

13

i Computing DEF and NKILL (1)

= For each block 5 with operations oy, 05, ..., 0,

KILLED = @
DEF(b) = ©
fori=kto1l

rassume o, is "X =y +z"
if (y € KILLED and z € KILLED)
add "y + z" to DER(b)

| add x to KILLED

111042009 (& 2002-09 Hal Perkire & LW CSE R-14

14

i Computing DEF and NKILL (2)

= After computing DEF and KILLED for a
block b,
[NKILL(b) = { all expressions }
for each expression e
for each variable v = e
if v < KILLED then
NKILL(b) = NKILL(b) - e

111042009 (& 2002-09 Hal Perkire & LW CSE R-15

15

Computing Available
Expressions

wurnd (1]

[Once DEF(b) and NKILL(b) are
computed for all blocks b

—Worklist = { all blocks b, }

while (Worklist = ©) @
remove a block b from Worklist
recompute AVAIL(b)

. if AVAIL(b) changed
| Worklist = Worklist _ successors(b) <

11/10/2009 @ 2002-09 Hal Perkire & W CSE F-16

16

Comparing Algorithms

o .
LVN — Local Value : i
Numbering o \\
SVN - Superlocal Value | B P
Numbering / 4
DVN - Dominator-based = 7 \,
Value Numbering P T S promr——
GRE — Global Redundancy s E=g-d
Elimination U=e+f U=ge+f
V F
G y=a+b
—y 7o]
11/10/z009 @ 2002-09 Hal Perkirs & L CSE R-17

17

i Comparing Algorithms (2)

=|LVN => SVN => DVN form a strict hierarchy

— later algorithms find a superset of previous
information

= Global RE finds a somewhat different set
[= Discovers e+f in F (computed in both D and E)

s Misses identical values if they have different
[names (e.g., a+b and c+d when a=c and b=d)

= Value Numbering catches this

2 & 3 &
o +b C+d

111042009 (& 2002-09 Hal Perkire & LW CSE R-18

18

i Scope of Analysis

= Larger context (EBBs, regions, global,
interprocedural) sometimes helps
= More opportunities for optimizations

= But not always
= Introduces uncertainties about flow of control
= Usually only allows weaker analysis

= Sometimes has unwanted side effects
= Can create additional pressure on registers, for example

111042009 (& 2002-09 Hal Perkire & LW CSE R-19

19

i Code Replication

= Sometimes replicating code increases
opportunities — modify the code to
create larger regions with simple control
flow

= Two examples

= Cloning
= Inline substitution

111042009 (& 2002-09 Hal Perkire & LW CSE R-20

20

Cloning

= Idea: duplicate blocks with multiple
predecessors

s |radeoff

= More local optimization possibilities — larger
blocks, fewer branches

« But; larger code size, may slow down if it
interacts badly with cache

111042009 (& 2002-09 Hal Perkins & LW CSE R-21

21

Original VN Example

111042009

m=a+b
m=a+b
€

q=a+b

r=c+d

L E
e=b+ 18 e=a+ 17
s=a+b t=c+d

Fv=a+|::| |
¥\ # ooy

(& 2002-09 Hal Perkire & LW CSE

Q22

22

Example with cloning

A m=a+b
Mm=a+h
‘.-______.-"-_ _-‘-_{-:-‘%—.H_
pr=igi] q=a-+b
Fr=c+d =4
yo=a + ; F{

v z=0c+d e=b+ 18 e=a+ 17
s=a+b t=c+d
u=e+f = ef

y v=a+h v=a+b
wo=04+d Wo=0+d
Gx=e+f x=e+f
y=a+b y=a+b
| ZeieEg =
111042009 (€ 2002-09 Hal Perkire & Uw CSE

Q-23

23

i Inline Substitution

I = Problem: an optimizer has to treat a
(: procedure call as if it (could have)
@ modified all globally reachable data

= Plus there is the basic expense of calling
the procedure

= Inline Substitution: replace each call

site with a copy of the called function
body

111042009 (& 2002-09 Hal Perkire & LW CSE R-24

24

Inline Substitution Issues

s Pro

= More effective optimization — better local
context and don't need to invalidate local
assumptions

= Eliminate overhead of normal function call
= Con
= Potential code bloat

[. Need to manage recompilation when either
caller or callee changes

111042009 (& 2002-09 Hal Perkins & LW CSE R-25

25

Dataflow analysis

= Global redundancy elimination is the

first example of a dataflow analysis
problem

= Many similar problems can be
expressed in a similar framework

= Only the first part of the story — once

we've discovered facts, we then need to
use them to improve code

111042009 (& 2002-09 Hal Perkire & LW CSE R-26

26

Dataflow Analysis (1)

= A collection of techniques for compile-
time reasoning about run-time values

= Almost always involves building a graph
= [rivial for basic blocks

= Control-flow graph or derivative for global
problems

= Call graph or derivative for whole-program
problems

111042009 (& 2002-09 Hal Perkire & LW CSE R-27

27

Dataflow Analysis (2)

= Usually formulated as a set of
simultaneous eguations (dataflow
problem)

= Sets attached to nodes and edges

~— = Need a lattice (or semilattice) to describe
values
« In particular, has an appropriate operator to

combine values and an appropriate “bottom”
minimal value

111042009 (& 2002-09 Hal Perkins & LW CSE

or

R-23

28

Py
i Dataflow Analysis (3) 54

= Desired solution is usually a meet over

all paths (MOP) solution

= "What is true on every path from entry”

= "What can happen on any path from entry”

= Usually relates to safety of optimization

111042009 (& 2002-09 Hal Perkire & LW CSE

R-24

29

i Dataflow Analysis (4)

= Limitations

= Precision —“up to symbolic execution”
= Assumes all paths taken
/ = Sometimes cannot afford to compute full solution

ali]=' —, Arrays — classic analysis treats each array as a
selid single fact
s Pointers — difficult, expensive to analyze
= Imprecision rapidly adds up
= For scalar values we can quickly solve simple
problems

111042009 (& 2002-09 Hal Perkire & LW CSE R-30

30

Example:
Available Expressions

= This is the analysis we did earlier to
eliminate redundant expression
evaluations

= Equation:

[AVAI L(P) — (ycpreds(b) (DE F(X) ./
T (AVAIL(X) ~ NKILL(x)))

11/10/2009 @ 2002-09 Hal Perkire & W CSE R-31

31

Characterizing Dataflow
Analysis

= All of these algorithms involve sets of facts
) about each basic block b

/= IN(b) — facts true on entry to b

~n OUT(b) — facts true on exit from b

s » GEN(b) — facts created and not killed in b
~ n KILL(b) — facts killed in b

W " These are related by the equation
- [OUT(b) = GEN(b) v (IN(b) = KILL(b))]
= Solve this iteratively for all blocks

s Sometimes information propagates forward;
sometimes backward

11/10/2009 @ 2002-09 Hal Perkire & W CSE R-32

32

i Example:Live Variable Analysis

= A variable vis /ive at point p iff there is any

4 path from p to a use of valong which vis not
e P redefined
¢
=V

s Uses

= Register allocation — only live variables need a
register (or temporary)

s Eliminating useless stores

s Detecting uses of uninitialized variables

s Improve SSA construction — only need ®-function
for variables that are live in a block (later)

111042009 (& 2002-09 Hal Perkire & LW CSE R-33

33

i Liveness Analysis Sets

— For each block b, define
E = use[b] = variable used in b before any def
E . @ = variable defined in b & not killed
= in[b] = variables live on entry to b
ALY = out[b] = variables live on exit from b

|

v

111042009 (& 2002-08 Hal Perkire & LW CSE T-24

34

i Equations for Live Variables

. = Given the preceding definitions, we

have | ;
N ~ in[b] = use[b] . (out[b] — deffb])
v S out[b] = Usesuceip] in[s]

= Algorithm -

[= Setin[b] = out[b] = ©
= Update in, out until no change

111042009 (& 2002-08 Hal Perkire & LW CSE T-25

35

Equations for Live Variables v2

= Many problems have more than one
formulation. For example, Live Variables...

a Sets

~ =« USED(b) — variables used in b before being
defined in b

« NOTDEFR(b) — variables not defined in b
L = LIVE(b) — variables live on ex# from b
= Equation
I—_I_"‘"(_E_(_b) = “sesucc(b) US_E_-D(S) .
— (LIVE(s) - NOTDE(s))

111042009 (& 2002-09 Hal Perkire & LW CSE R-36

36

i Example: Reaching Definitions

(j: — = A definition ¢ of some variable v
F reaches operation / iff / reads the

value of v and there is a path from ¢
to / that does not define v

s Uses

= Find all of the possible definition points for
a variable in an expression

111042009 (& 2002-09 Hal Perkins & LW CSE R-37

37

Equations for Reaching
Definitions

y = Sets

. EFOUT(b) — set of definitions in b that reach the
end of b (i.e., not subsequently redefined in b)

"" /j:URVIVED(b) — set of all definitions not obscured

v, % by a definition in b

= REACHES(b) — set of definitions that reach b

= Equation

REACHES(b) = 'perrecsoy DEFOUT(p)
(REACHES(p) ~ SURVIVED(p))

11/10/2009 @ 2002-09 Hal Perkire & W CSE R-38

38

Example: Very Busy
Expressions

= An expression eis considered very busy
at some point p if e is evaluated and
\f /ﬂ used along every path that leaves p,

: and evaluating e at p would produce
/7 ’ﬂ&\ the same result as evaluating it at the
¢ ¢ 5 original locations

s Uses

= Code hoisting — move eto p (reduces code
size; no effect on execution time)

11/10/2009 @ 2002-09 Hal Perkins & W CSE R-29

39

Equations for Very Busy
Expressions

= Sets
= USED(b) — expressions used in b before they are

Kkilled

@ s KILLED(b) — expressions redefined in b before
they are used

\) = VERYBUSY(b) — expressions very busy on exit
Iy i PR e ry busy
= Equation
VERYBUSY(b) = meequepy USED(s) W
— (VERYBUSY(s) - KILLED(s))

11/10/2009 @ 2002-09 Hal Perkire & W CSE F-40

40

i Efficiency of Dataflow Analysis

= The algorithms eventually terminate,
but the expected time needed can be
reduced by picking a good order to visit
nodes in the CFG depending on how
information flows
= Forward problems — reverse postorder

[. Backward problems - postorder

111042009 (& 2002-09 Hal Perkire & LW CSE R-41

41

£ (& ft.-_}

Aliases e g o

g

= A variable or memory location may
have multiple names or aliases
= Call-by-reference parameters
~w Variables whose address is taken (&x)
= Expressions that dereference pointers
< (p-x, *p)
_ = Expressions involving subscripts (a[i])
_ = Variables in nested scopes

111042009 (& 2002-08 Hal Perkire & LW CSE T-42

42

*—F:Iﬂ —_— *’/7

Aliases vs Optimizations

= Example: / ¢
PX:=5; QX i=7/; ai=px

——

= Does reaching definition analysis show that
the definition of p.x reaches a?

[= (Or: do p and q refer to the same
variable/object?)

= (Or: canp and g refer to the same thing?)

111042009 (& 2002-08 Hal Perkins & LW CSE T-43

43

Aliases vs Optimizations

= Example
void f(int *p, int *q) {
P=L"q=2
return _’*:p;
b

= How do we account for the possibility that
p and q might refer to the same thing?

= Safe approximation: since it's possible,
assume it is true (but rules out a lot)

111042009 (& 2002-08 Hal Perkire & LW CSE T-44

44

i Types and Aliases (1)

= In Java, ML, MiniJava, and others, if
« ¥7 two variables have incompatible types
s =~ *% they cannot be names for the same
location

= Also helps that programmer cannot create
arbitrary pointers to storage in these
languages

111042009 (& 2002-08 Hal Perkire & LW CSE T-45

45

i Types and Aliases (2)

= Strategy: Divide memory locations into
[alias classes based on type information
(every type, array, record field is a class)

= Implication: need to propagate type
information from the semantics pass to
optimizer
= Not normally true of a minimally typed IR

= Items in different alias classes cannot refer
to each other

111042009 (& 2002-08 Hal Perkire & LW CSE T-46

46

,aj-: modlee ¢ — D
1P
Aliases and Flow Analysis

= Idea: Base alias classes on points where a
value is created
[. Every new/malloc and each local or global

variable whose address is taken is an alias
class

= Pointers can refer to values in multiple alias
classes (so each memory reference is to a set
of alias classes)

= Use to calculate "may alias” information (e.q.,
p "may alias” q at program point s)

111042009 {& 2002-08 Hal Perkins & LW CSE T-47

47

Using “may-alias” information

s |reat each alias class as a “variable” in

dataflow analysis problems

= Example: framework for available
expressions
= Given statement s: M[a]:=b,
- gen[s] = {} -
+kill[s] = { M[_)E] | a may aliasi{ at s }

111042009 (& 2002-08 Hal Perkire & LW CSE

T-48

48

May-Alias Analysis

Without alias analysis, = Code
#2 kills M[t] since x

and t might be related L u = ML)
: . 2: M[X]:=r

If analysis determines -

that “x may-alias t” is 30 wi= Mt]

false, M[t] is still 4: b:=u+w

available at #3; can
eliminate the common
subexpression and
use copy propagation

111042009 (& 2002-08 Hal Perkire & LW CSE

T-49

49

And so forth...

= We now have machinery for discovering
some interesting facts.

s Next: what can we do with that
information?

111042009 (& 2002-09 Hal Perkins & LW CSE R-30

50

