CSE P 501 – Compilers

Dataflow Analysis
Hal Perkins
Autumn 2009
Agenda

- Initial example: dataflow analysis for common subexpression elimination
- Other analysis problems that work in the same framework
The Story So Far...

- Redundant expression elimination
 - Local Value Numbering
 - Superlocal Value Numbering
 - Extends VN to EBBs
 - SSA-like namespace
 - Dominator VN Technique (DVNT)
- All of these propagate along forward edges
- None are global
 - In particular, can’t handle back edges (loops)
Dominator Value Numbering

- Most sophisticated algorithm so far
- Still misses some opportunities
- Can’t handle loops
Available Expressions

- Goal: use dataflow analysis to find common subexpressions whose range spans basic blocks

- Idea: calculate *available expressions* at beginning of each basic block

- Avoid re-evaluation of an available expression – use a copy operation
“Available” and Other Terms

- An expression e is *defined* at point p in the CFG if its value is computed at p
 - Sometimes called *definition site*
- An expression e is *killed* at point p if one of its operands is defined at p
 - Sometimes called *kill site*
- An expression e is *available* at point p if every path leading to p contains a prior definition of e and e is not killed between that definition and p
Available Expression Sets

- For each block b, define
 - $\text{AVAIL}(b)$ – the set of expressions available on entry to b
 - $\text{NKILL}(b)$ – the set of expressions not killed in b
 - $\text{DEF}(b)$ – the set of expressions defined in b and not subsequently killed in b
Computing Available Expressions

- AVAIL(b) is the set
 \[AVAIL(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (AVAIL(x) \cap \text{NKILL}(x))) \]
 - \(\text{preds}(b) \) is the set of b’s predecessors in the control flow graph

- This gives a system of simultaneous equations – a dataflow problem
Name Space Issues

- In previous value-numbering algorithms, we used a SSA-like renaming to keep track of versions
- In global dataflow problems, we use the original namespace
 - The KILL information captures when a value is no longer available
GCSE with Available Expressions

- For each block b, compute DEF(b) and NKILL(b)
- For each block b, compute AVAIL(b)
- For each block b, value number the block starting with AVAIL(b)
- Replace expressions in AVAIL(b) with references to the previously computed values
Global CSE Replacement

- After analysis and before transformation, assign a global name to each expression e by hashing on e
- During transformation step
 - At each evaluation of e, insert copy $\text{name}(e) = e$
 - At each reference to e, replace e with $\text{name}(e)$
Analysis

- Main problem – inserts extraneous copies at all definitions and uses of every \(e \) that appears in any \texttt{AVAIL}(b)
 - But the extra copies are dead and easy to remove
 - Useful copies often coalesce away when registers and temporaries are assigned

- Common strategy
 - Insert copies that might be useful
 - Let dead code elimination sort it out later
Computing Available Expressions

- **Big Picture**
 - Build control-flow graph
 - Calculate initial local data – DEF(b) and NKILL(b)
 - This only needs to be done once
 - Iteratively calculate AVAIL(b) by repeatedly evaluating equations until nothing changes
 - Another fixed-point algorithm
Computing DEF and NKILL (1)

- For each block b with operations o_1, o_2, \ldots, o_k

 $\text{KILLED} = \emptyset$

 $\text{DEF}(b) = \emptyset$

 for $i = k$ to 1

 assume o_i is “$x = y + z$”

 if ($y \notin \text{KILLED}$ and $z \notin \text{KILLED}$)

 add “$y + z$” to $\text{DEF}(b)$

 add x to KILLED

 ...

...
Computing DEF and NKILL (2)

- After computing DEF and KILLED for a block \(b \),

 \[
 NKILL(b) = \{ \text{all expressions} \}
 \]

 for each expression \(e \)

 for each variable \(\nu \in e \)

 if \(\nu \in \text{KILLED} \) then

 \[
 NKILL(b) = NKILL(b) - e
 \]
Computing Available Expressions

- Once DEF(b) and NKILL(b) are computed for all blocks b

 Worklist = \{ all blocks b_i \}

 while (Worklist \neq \emptyset)
 remove a block b from Worklist
 recompute AVAIL(b)
 if AVAIL(b) changed
 Worklist = Worklist \cup \text{successors}(b)
Comparing Algorithms

- LVN – Local Value Numbering
- SVN – Superlocal Value Numbering
- DVN – Dominator-based Value Numbering
- GRE – Global Redundancy Elimination
Comparing Algorithms (2)

- LVN => SVN => DVN form a strict hierarchy – later algorithms find a superset of previous information
- Global RE finds a somewhat different set
 - Discovers e+f in F (computed in both D and E)
 - Misses identical values if they have different names (e.g., a+b and c+d when a=c and b=d)
 - Value Numbering catches this
Scope of Analysis

- Larger context (EBBs, regions, global, interprocedural) sometimes helps
 - More opportunities for optimizations

- But not always
 - Introduces uncertainties about flow of control
 - Usually only allows weaker analysis
 - Sometimes has unwanted side effects
 - Can create additional pressure on registers, for example
Code Replication

- Sometimes replicating code increases opportunities – modify the code to create larger regions with simple control flow

- Two examples
 - Cloning
 - Inline substitution
Cloning

- Idea: duplicate blocks with multiple predecessors

- Tradeoff
 - More local optimization possibilities – larger blocks, fewer branches
 - But: larger code size, may slow down if it interacts badly with cache
Original VN Example

A
m = a + b
n = a + b

B
p = c + d
r = c + d

C
q = a + b
r = c + d

D
e = b + 18
s = a + b
u = e + f

E
e = a + 17
t = c + d
u = e + f

F
v = a + b
w = c + d
x = e + f

G
y = a + b
z = c + d
Example with cloning

\[\begin{align*}
m &= a + b \\
n &= a + b \\
p &= c + d \\
r &= c + d \\
y &= a + b \\
z &= c + d \\
e &= b + 18 \\
s &= a + b \\
u &= e + f \\
v &= a + b \\
w &= c + d \\
x &= e + f \\
y &= a + b \\
z &= c + d \\
e &= a + 17 \\
t &= c + d \\
u &= e + f \\
v &= a + b \\
w &= c + d \\
x &= e + f \\
y &= a + b \\
z &= c + d
\end{align*} \]
Problem: an optimizer has to treat a procedure call as if it (could have) modified all globally reachable data

- Plus there is the basic expense of calling the procedure

Inline Substitution: replace each call site with a copy of the called function body
Inline Substitution Issues

- **Pro**
 - More effective optimization – better local context and don’t need to invalidate local assumptions
 - Eliminate overhead of normal function call

- **Con**
 - Potential code bloat
 - Need to manage recompilation when either caller or callee changes
Dataflow analysis

- Global redundancy elimination is the first example of a *dataflow analysis* problem
- Many similar problems can be expressed in a similar framework
- Only the first part of the story – once we’ve discovered facts, we then need to use them to improve code
Dataflow Analysis (1)

- A collection of techniques for compile-time reasoning about run-time values
- Almost always involves building a graph
 - Trivial for basic blocks
 - Control-flow graph or derivative for global problems
 - Call graph or derivative for whole-program problems
Dataflow Analysis (2)

- Usually formulated as a set of *simultaneous equations* (dataflow problem)
 - Sets attached to nodes and edges
 - Need a lattice (or semilattice) to describe values
 - In particular, has an appropriate operator to combine values and an appropriate “bottom” or minimal value
Dataflow Analysis (3)

- Desired solution is usually a *meet over all paths* (MOP) solution
 - “What is true on every path from entry”
 - “What can happen on any path from entry”
- Usually relates to safety of optimization
Dataflow Analysis (4)

- Limitations
 - Precision – “up to symbolic execution”
 - Assumes all paths taken
 - Sometimes cannot afford to compute full solution
 - Arrays – classic analysis treats each array as a single fact
 - Pointers – difficult, expensive to analyze
 - Imprecision rapidly adds up

- For scalar values we can quickly solve simple problems
Example:
Available Expressions

- This is the analysis we did earlier to eliminate redundant expression evaluations

- Equation:
 \[
 \text{AVAIL}(b) = \bigcap_{x \in \text{preds}(b)} (\text{DEF}(x) \cup (\text{AVAIL}(x) \cap \text{NKILL}(x)))
 \]
Characterizing Dataflow Analysis

- All of these algorithms involve sets of facts about each basic block b
 - \(\text{IN}(b) \) – facts true on entry to b
 - \(\text{OUT}(b) \) – facts true on exit from b
 - \(\text{GEN}(b) \) – facts created and not killed in b
 - \(\text{KILL}(b) \) – facts killed in b

- These are related by the equation
 \[
 \text{OUT}(b) = \text{GEN}(b) \cup (\text{IN}(b) - \text{KILL}(b))
 \]

- Solve this iteratively for all blocks
- Sometimes information propagates forward; sometimes backward
Example: Live Variable Analysis

- A variable v is *live* at point p iff there is *any* path from p to a use of v along which v is not redefined

- Uses
 - Register allocation – only live variables need a register (or temporary)
 - Eliminating useless stores
 - Detecting uses of uninitialized variables
 - Improve SSA construction – only need Φ-function for variables that are live in a block (later)
Liveness Analysis Sets

For each block b, define

- $\text{use}[b] = \text{variable used in } b \text{ before any } \text{def}$
- $\text{def}[b] = \text{variable defined in } b \text{ & not killed}$
- $\text{in}[b] = \text{variables live on entry to } b$
- $\text{out}[b] = \text{variables live on exit from } b$
Equations for Live Variables

- Given the preceding definitions, we have
 \[\text{in}[b] = \text{use}[b] \cup (\text{out}[b] - \text{def}[b]) \]
 \[\text{out}[b] = \bigcup_{s \in \text{succ}[b]} \text{in}[s] \]

- Algorithm
 - Set \(\text{in}[b] = \text{out}[b] = \emptyset \)
 - Update \text{in}, \text{out} until no change
Many problems have more than one formulation. For example, Live Variables...

- **Sets**
 - $\text{USED}(b)$ – variables used in b before being defined in b
 - $\text{NOTDEF}(b)$ – variables not defined in b
 - $\text{LIVE}(b)$ – variables live on *exit* from b

- **Equation**
 \[
 \text{LIVE}(b) = \bigcup_{s \in \text{succ}(b)} \text{USED}(s) \cup (\text{LIVE}(s) \cap \text{NOTDEF}(s))
 \]
Example: Reaching Definitions

- A definition \(d \) of some variable \(v \) reaches operation \(i \) iff \(i \) reads the value of \(v \) and there is a path from \(d \) to \(i \) that does not define \(v \)

- Uses
 - Find all of the possible definition points for a variable in an expression
Equations for Reaching Definitions

- **Sets**
 - $\text{DEFOUT}(b)$ – set of definitions in b that reach the end of b (i.e., not subsequently redefined in b)
 - $\text{SURVIVED}(b)$ – set of all definitions not obscured by a definition in b
 - $\text{REACHES}(b)$ – set of definitions that reach b

- **Equation**

 \[
 \text{REACHES}(b) = \bigcup_{p \in \text{preds}(b)} \text{DEFOUT}(p) \cup (\text{REACHES}(p) \cap \text{SURVIVED}(p))
 \]
Example: Very Busy Expressions

- An expression e is considered very busy at some point p if e is evaluated and used along every path that leaves p, and evaluating e at p would produce the same result as evaluating it at the original locations.

- Uses
 - Code hoisting – move e to p (reduces code size; no effect on execution time)
Equations for Very Busy Expressions

- **Sets**
 - `USED(b)` – expressions used in `b` before they are killed
 - `KILLED(b)` – expressions redefined in `b` before they are used
 - `VERYBUSY(b)` – expressions very busy on exit from `b`

- **Equation**
 \[
 \text{VERYBUSY}(b) = \bigcap_{s \in \text{succ}(b)} \text{USED}(s) \cup (\text{VERYBUSY}(s) - \text{KILLED}(s))
 \]
The algorithms eventually terminate, but the expected time needed can be reduced by picking a good order to visit nodes in the CFG depending on how information flows.

- Forward problems – reverse postorder
- Backward problems - postorder
Aliases

- A variable or memory location may have multiple names or *aliases*
 - Call-by-reference parameters
 - Variables whose address is taken (&x)
 - Expressions that dereference pointers (p.x, *p)
 - Expressions involving subscripts (a[i])
 - Variables in nested scopes
Aliases vs Optimizations

Example:

\[p.x := 5; \quad q.x := 7; \quad a := p.x; \]

- Does reaching definition analysis show that the definition of \(p.x \) reaches \(a \)?
- (Or: do \(p \) and \(q \) refer to the same variable/object?)
- (Or: \textit{can} \(p \) and \(q \) refer to the same thing?)
Aliases vs Optimizations

Example

```c
void f(int *p, int *q) {
    *p = 1; *q = 2;
    return *p;
}
```

- How do we account for the possibility that `p` and `q` might refer to the same thing?
- Safe approximation: since it’s possible, assume it is true (but rules out a lot)
Types and Aliases (1)

- In Java, ML, MiniJava, and others, if two variables have incompatible types they cannot be names for the same location
 - Also helps that programmer cannot create arbitrary pointers to storage in these languages
Types and Aliases (2)

- Strategy: Divide memory locations into *alias classes* based on type information (every type, array, record field is a class)
- Implication: need to propagate type information from the semantics pass to optimizer
 - Not normally true of a minimally typed IR
- Items in different alias classes cannot refer to each other
Aliases and Flow Analysis

- Idea: Base alias classes on points where a value is created
 - Every new/malloc and each local or global variable whose address is taken is an alias class
 - Pointers can refer to values in multiple alias classes (so each memory reference is to a set of alias classes)
 - Use to calculate “may alias” information (e.g., p “may alias” q at program point s)
Using “may-alias” information

- Treat each alias class as a “variable” in dataflow analysis problems
- Example: framework for available expressions
 - Given statement \(s: M[a] := b, \)
 - \(\text{gen}[s] = \{ \} \)
 - \(\text{kill}[s] = \{ M[x] \mid \text{a may alias x at s} \} \)
May-Alias Analysis

- Without alias analysis, #2 kills M[t] since x and t might be related.

- If analysis determines that “x may-alias t” is false, M[t] is still available at #3; can eliminate the common subexpression and use copy propagation.

Code

1: u := M[t]
2: M[x] := r
3: w := M[t]
4: b := u+w
And so forth...

- We now have machinery for discovering some interesting facts.
- Next: what can we do with that information?