CSE P 501 – Compilers

Introduction to Optimization
Hal Perkins
Autumn 2009
Agenda

- Optimization
 - Goals
 - Scope: local, superlocal, regional, global (intraprocedural), interprocedural
- Control flow graphs
- Value numbering
- Dominators

Ref.: Cooper/Torczon ch. 8
Code Improvement – How?

- Pick a better algorithm(!)
- Use machine resources effectively
 - Instruction selection & scheduling
 - Register allocation
Code Improvement (2)

- Local optimizations – basic blocks
 - Algebraic simplifications
 - Constant folding
 - Common subexpression elimination (i.e., redundancy elimination)
- Dead code elimination
- Specialize computation based on context
 - etc., etc., ...

11/10/2009
Code Improvement (3)

- Global optimizations (single function)
 - Code motion
 - Moving invariant computations out of loops
 - Strength reduction (replace multiplications by repeated additions, for example)
 - Global common subexpression elimination
 - Global register allocation
 - Many others...
“Optimization”

- None of these improvements are truly “optimal”
 - Hard problems
 - Proofs of optimality assume artificial restrictions

- Best we can do is to improve things
 - Most (much?) (some?) of the time
Example: $A[i,j]$

- Without any surrounding context, need to generate code to calculate

 $$
 \begin{align*}
 &a[i,j] \equiv + (a + i) \\
 &\Rightarrow (l+a) \equiv i [a]
 \end{align*}
 $$

 \[address(A) \]

 + \ (i-low_1(A)) \ * \ (high_2(A) - low_2(a) + 1) \ * \ size(A) \\
 + \ (j-low_2(A)) \ * \ size(A)

- low_i and high_i are subscript bounds in dimension i
- address(A) is the runtime address of first element of A

... And we really should be checking that i, j are in bounds
Some Optimizations for $A[i,j]$

- With more context, we can do better
- Examples
 - If A is local, with known bounds, much of the computation can be done at compile time
 - If $A[i,j]$ is in a loop where i and j change systematically, we probably can replace multiplications with additions each time around the loop to reference successive rows/columns
 - Even if not, we can move “loop-invariant” parts of the calculation outside the loop
Optimization Phase

Goal

- Discover, at compile time, information about the runtime behavior of the program, and use that information to improve the generated code
A First Running Example: Redundancy Elimination

- An expression \(x+y \) is **redundant** at a program point iff, along every path from the procedure’s entry, it has been evaluated and its constituent subexpressions (\(x \) and \(y \)) have **not** been redefined.

- If the compiler can prove the expression is redundant:
 - Can store the result of the earlier evaluation
 - Can replace the redundant computation with a reference to the earlier (stored) result
Common Problems in Code Improvement

- This strategy is typical of most compiler optimizations
 - First, discover opportunities through program analysis
 - Then, modify the IR to take advantage of the opportunities
 - Historically, goal usually was to decrease execution time
 - Other possibilities: reduce space, power, ...
Issues (1)

- Safety – transformation must not change program meaning
 - Must generate correct results
 - Can’t generate spurious errors
 - Optimizations must be conservative
- Large part of analysis goes towards proving safety
 - Can pay off to speculate (be optimistic) but then need to recover if reality is different
Issues (2)

- Profitability
 - If a transformation is possible, is it profitable?
 - Example: loop unrolling
 - Can increase amount of work done on each iteration, i.e., reduce loop overhead
 - Can eliminate duplicate operations done on separate iterations
Issues (3)

- Downside risks
 - Even if a transformation is generally worthwhile, need to factor in potential problems
 - For example:
 - Transformation might need more temporaries, putting additional pressure on registers
 - Increased code size could cause cache misses, or in bad cases, increase page working set
Example: Value Numbering

- Technique for eliminating redundant expressions: assign an identifying number VN(n) to each expression
 - VN(x+y)=VN(j) if x+y and j have the same value
 - Use hashing over value numbers for efficiency

- Old idea (Balke 1968, Ershov 1954)
 - Invented for low-level, linear IRs
 - Equivalent methods exist for tree IRs, e.g., build a DAG
Uses of Value Numbers

- Improve the code
 - Replace redundant expressions
 - Simplify algebraic identities
 - Discover, fold, and propagate constant valued expressions
Local Value Numbering

- **Algorithm**
 - For each operation $o = \langle \text{op}, o_1, o_2 \rangle$ in a block
 1. Get value numbers for operands from hash lookup
 2. Hash $\langle \text{op}, VN(o_1), VN(o_2) \rangle$ to get a value number for o
 (If op is commutative, sort $VN(o_1), VN(o_2)$ first)
 3. If o already has a value number, replace o with a reference to the value
 4. If o_1 and o_2 are constant, evaluate o at compile time
 and replace with an immediate load
 - If hashing behaves well, this runs in linear time
Example

Code
\[a^3 = x^1 + y^2 \]
\[b^3 = x^1 + y^2 \]
\[a^4 = 17^4 \]
\[c^3 = x^1 + y^2 \]

Rewritten
\[a^3 = x^1 + y^2 \]
\[b^3 = a^3 \]
\[a^4 = 17^4 \]
\[c^3 = b^3 \]
\[t = a^3 \]
\[c^3 = t \]
Bug in Simple Example

- If we use the original names, we get in trouble when a name is reused

- Solutions
 - Be clever about which copy of the value to use (e.g., use c=b in last statement)
 - Create an extra temporary
 - Rename around it (best!)
Renaming

- Idea: give each value a unique name a_i^j means i^{th} definition of a with $VN = j$
- Somewhat complex notation, but meaning is clear
- This is the idea behind SSA (Static Single Assignment)
 - Popular modern IR – exposes many opportunities for optimizations
Example Revisited

Code
\[
\begin{align*}
 a_0^3 &= x_0^1 + y_0^2 \\
 b_0^3 &= x_0^1 + y_0^2 \\
 a_1^1 &= 17^4 \\
 c_0^3 &= x_0^1 + y_0^2
\end{align*}
\]

Rewritten
\[
\begin{align*}
 a_0^3 &= x_0^1 + y_0^2 \\
 b_0^3 &= a_0^3 \\
 a_1^1 &= 17 \\
 c_0^3 &= a_0^3
\end{align*}
\]
Simple Extensions to Value Numbering

- Constant folding
 - Add a bit that records when a value is constant
 - Evaluate constant values at compile time
 - Replace op with load immediate

- Algebraic identities: \(x + 0, x \times 1, x - x, \ldots \)
 - Many special cases
 - Switch on op to narrow down checks needed
 - Replace result with input VN
Larger Scopes

- This algorithm works on straight-line blocks of code (basic blocks)
 - Best possible results for single basic blocks
 - Loses all information when control flows to another block
- To go further we need to represent multiple blocks of code and the control flow between them
Basic Blocks

- **Definition**: A *basic block* is a maximal length sequence of straight-line code.

- **Properties**
 - Statements are executed sequentially.
 - If any statement executes, they all do (baring exceptions).

- **In a linear IR, the first statement of a basic block is often called the leader.**
Control Flow Graph (CFG)

- Nodes: basic blocks
 - Possible representations: linear 3-address code, expression-level AST, DAG
- Edges: include a directed edge from n1 to n2 if there is *any* possible way for control to transfer from block n1 to n2 during execution
Constructing Control Flow Graphs from Linear IRs

- **Algorithm**
 - Pass 1: Identify basic block leaders with a linear scan of the IR
 - Pass 2: Identify operations that end a block and add appropriate edges to the CFG to all possible successors
 - See your favorite compiler book for details

- For convenience, ensure that every block ends with conditional or unconditional jump
 - Code generator can pick the most convenient "fall-through" case later and eliminate unneeded jumps
Scope of Optimizations

- Optimization algorithms can work on units as small as a basic block or as large as a whole program.
- Local information is generally more precise and can lead to locally optimal results.
- Global information is less precise (lose information at join points in the graph), but exposes opportunities for improvements across basic blocks.
Optimization Categories (1)

- **Local methods**
 - Usually confined to basic blocks
 - Simplest to analyze and understand
 - Most precise information
Optimization Categories (2)

- Superlocal methods
 - Operate over Extended Basic Blocks (EBBs)
 - An EBB is a set of blocks \(b_1, b_2, \ldots, b_n \) where \(b_1 \) has multiple predecessors and each of the remaining blocks \(b_i (2 \leq i \leq n) \) have only \(b_{i-1} \) as its unique predecessor
 - The EBB is entered only at \(b_1 \), but may have multiple exits
 - A single block \(b_i \) can be the head of multiple EBBs (these EBBs form a tree rooted at \(b_i \))
 - Use information discovered in earlier blocks to improve code in successors
Optimization Categories (3)

- **Regional methods**
 - Operate over scopes larger than an EBB but smaller than an entire procedure/function/method
 - Typical example: loop body
 - Difference from superlocal methods is that there may be merge points in the graph (i.e., a block with two or more predecessors)
Optimization Categories (4)

- **Global methods**
 - Operate over entire procedures
 - Sometimes called *intraprocedural* methods
 - Motivation is that local optimizations sometimes have bad consequences in larger context
 - Procedure/method/function is a natural unit for analysis, separate compilation, etc.
 - Almost always need global data-flow analysis information for these
Optimization Categories (5)

- **Whole-program methods**
 - Operate over more than one procedure
 - Sometimes called *interprocedural* methods
 - Challenges: name scoping and parameter binding issues at procedure boundaries
 - Classic examples: inline method substitution, interprocedural constant propagation
 - Common in aggressive JIT compilers and optimizing compilers for object-oriented languages
Value Numbering Revisited

- Local Value Numbering
 - 1 block at a time
 - Strong local results
 - No cross-block effects
- Missed opportunities
Superlocal Value Numbering

- Idea: apply local method to EBBs
 - \{A,B\}, \{A,C,D\}, \{A,C,E\}
- Final info from A is initial info for B, C; final info from C is initial for D, E
- Gets reuse from ancestors
- Avoid reanalyzing A, C
- Doesn’t help with F, G
SSA Name Space (from before)

<table>
<thead>
<tr>
<th>Code</th>
<th>Rewritten</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_0^3 = x_0^1 + y_0^2$</td>
<td>$a_0^3 = x_0^1 + y_0^2$</td>
</tr>
<tr>
<td>$b_0^3 = x_0^1 + y_0^2$</td>
<td>$b_0^3 = a_0^3$</td>
</tr>
<tr>
<td>$a_1^4 = 17$</td>
<td>$a_1^4 = 17$</td>
</tr>
<tr>
<td>$c_0^3 = x_0^1 + y_0^2$</td>
<td>$c_0^3 = a_0^3$</td>
</tr>
</tbody>
</table>

- Unique name for each definition
- Name \Leftrightarrow VN
- a_0^3 is available to assign to c_0^3
SSA Name Space

- Two Principles
 - Each name is defined by exactly one operation
 - Each operand refers to exactly one definition

- Need to deal with merge points
 - Add Φ functions at merge points to reconcile names
 - Use subscripts on variable names for uniqueness
Superlocal Value Numbering with All Bells & Whistles

- Finds more redundancies
- Little extra cost
- Still does nothing for F and G

\[m_0 = a_0 + b_0 \]
\[n_0 = a_0 + b_0 \]

\[p_0 = c_0 + d_0 \]
\[r_0 = c_0 + d_0 \]

\[q_0 = a_0 + b_0 \]
\[r_1 = c_0 + d_0 \]

\[e_0 = b_0 + 18 \]
\[s_0 = a_0 + b_0 \]
\[u_0 = e_0 + r_0 \]

\[e_1 = a_0 + 17 \]
\[t_0 = c_0 + d_0 \]
\[u_1 = e_1 + r_0 \]

\[r_2 = \Phi(r_0, r_1) \]
\[v_0 = a_0 + b_0 \]
\[w_0 = c_0 + d_0 \]
\[x_0 = e_2 + f_0 \]
Larger Scopes

- Still have not helped F and G
- Problem: multiple predecessors
- Must decide what facts hold in F and in G
 - For G, combine B & F?
 - Merging states is expensive
 - Fall back on what we know
Dominators

- Definition
 - x dominates y iff every path from the entry of the control-flow graph to y includes x
- By definition, x dominates x
- Associate a Dom set with each node
 - |Dom(x)| ≥ 1
- Many uses in analysis and transformation
 - Finding loops, building SSA form, code motion
Immediate Dominators

- For any node x, there is a y in $\text{Dom}(x)$ closest to x
- This is the immediate dominator of x
 - Notation: $\text{IDom}(x)$
Dominator Sets

<table>
<thead>
<tr>
<th>Block</th>
<th>Dom</th>
<th>IDom</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>A, B</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>A, C</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>A, C, D</td>
<td>C</td>
</tr>
<tr>
<td>E</td>
<td>A, C, E</td>
<td>C</td>
</tr>
<tr>
<td>F</td>
<td>A, C, F</td>
<td>A</td>
</tr>
<tr>
<td>G</td>
<td>A, G</td>
<td>A</td>
</tr>
</tbody>
</table>

\[m_0 = a_0 + b_0 \]
\[n_0 = a_0 + b_0 \]
\[r_0 = c_0 + d_0 \]
\[r_1 = c_0 + d_0 \]
\[p_0 = c_0 + d_0 \]

\[e_0 = b_0 + 18 \]
\[s_0 = a_0 + b_0 \]
\[u_0 = e_0 + f_0 \]

\[e_1 = a_0 + 17 \]
\[t_0 = c_0 + d_0 \]
\[u_1 = e_1 + f_0 \]

\[e_2 = \Phi(e_0, e_1) \]
\[u_2 = \Phi(u_0, u_1) \]
\[v_0 = a_0 + b_0 \]
\[w_0 = c_0 + d_0 \]
\[x_0 = e_2 + f_0 \]

\[r_2 = \Phi(r_0, r_1) \]
\[y_0 = a_0 + b_0 \]
\[z_0 = c_0 + d_0 \]
Dominator Value Numbering

- Still looking for a way to handle F and G
- Idea: Use info from \(\text{IDom}(x) \) to start analysis of \(x \)
 - Use C for F and A for G
- Dominator VN Technique (DVNT)
DVNT algorithm

- Use superlocal algorithm on extended basic blocks
 - Use scoped hash tables & SSA name space as before
- Start each node with table from its IDOM
- No values flow along back edges (i.e., loops)
- Constant folding, algebraic identities as before
Dominator Value Numbering

- Advantages
 - Finds more redundancy
 - Little extra cost
- Shortcomings
 - Misses some opportunities (common calculations in ancestors that are not IDOMs)
 - Doesn’t handle loops or other back edges

\[
\begin{align*}
A & : m_0 = a_0 + b_0 \\
& \quad n_0 = a_0 + b_0 \\
B & : p_0 = c_0 + d_0 \\
& \quad r_0 = c_0 + d_0 \\
C & : c_0 = a_0 + b_0 \\
& \quad r_1 = c_0 + d_0 \\
D & : e_0 = b_0 + 18 \\
& \quad s_0 = a_0 + b_0 \\
& \quad u_0 = e_0 + f_0 \\
E & : e_1 = a_0 + 17 \\
& \quad t_0 = c_0 + d_0 \\
& \quad u_1 = e_1 + f_0 \\
F & : e_2 = \Phi(e_0, e_1) \\
& \quad u_2 = \Phi(u_0, u_1) \\
& \quad v_0 = a_0 + b_0 \\
& \quad w_0 = c_0 + d_0 \\
& \quad x_0 = e_2 + f_0 \\
G & : r_2 = \Phi(r_0, r_1) \\
& \quad y_0 = a_0 + b_0 \\
& \quad z_0 = c_0 + d_0
\end{align*}
\]
The Story So Far...

- Local algorithm
- Superlocal extension
 - Some local methods extend cleanly to superlocal scopes
- Dominator VN Technique (DVNT)
- All of these propagate along forward edges
- None are global
Coming Attractions

- **Data-flow analysis**
 - Provides global solution to redundant expression analysis
 - Catches some things missed by DVNT, but misses some others
 - Generalizes to many other analysis problems, both forward and backward

- **Transformations**
 - A catalog of some of the things a compiler can do with the analysis information