CSE P 501 – Compilers

Introduction to Optimization
Hal Perkins
Autumn 2009
Agenda

- Optimization
 - Goals
 - Scope: local, superlocal, regional, global (intraprocedural), interprocedural

- Control flow graphs
- Value numbering
- Dominators
- Ref.: Cooper/Torczon ch. 8
Code Improvement – How?

- Pick a better algorithm(!)
- Use machine resources effectively
 - Instruction selection & scheduling
 - Register allocation
Code Improvement (2)

- Local optimizations – basic blocks
 - Algebraic simplifications
 - Constant folding
 - Common subexpression elimination (i.e., redundancy elimination)
 - Dead code elimination
 - Specialize computation based on context
 - etc., etc., ...
Code Improvement (3)

- Global optimizations
 - Code motion
 - Moving invariant computations out of loops
 - Strength reduction (replace multiplications by repeated additions, for example)
 - Global common subexpression elimination
 - Global register allocation
 - Many others...
“Optimization”

- None of these improvements are truly “optimal”
 - Hard problems
 - Proofs of optimality assume artificial restrictions
- Best we can do is to improve things
 - Most (much?) (some?) of the time
Example: $A[i,j]$

- Without any surrounding context, need to generate code to calculate
 \[
 \text{address}(A) + (i - \text{low}_1(A)) \times (\text{high}_2(A) - \text{low}_2(A) + 1) \times \text{size}(A) + (j - \text{low}_2(A)) \times \text{size}(A)
 \]
 - low_i and high_i are subscript bounds in dimension i
 - $\text{address}(A)$ is the runtime address of first element of A
- ... And we really should be checking that i, j are in bounds
Some Optimizations for A[i,j]

- With more context, we can do better
- Examples
 - If A is local, with known bounds, much of the computation can be done at compile time
 - If A[i,j] is in a loop where i and j change systematically, we probably can replace multiplications with additions each time around the loop to reference successive rows/columns
 - Even if not, we can move “loop-invariant” parts of the calculation outside the loop
Optimization Phase

Goal

- Discover, at compile time, information about the runtime behavior of the program, and use that information to improve the generated code
A First Running Example: Redundancy Elimination

- An expression $x+y$ is *redundant* at a program point iff, along every path from the procedure’s entry, it has been evaluated and its constituent subexpressions (x and y) have not been redefined.

- If the compiler can prove the expression is redundant:
 - Can store the result of the earlier evaluation
 - Can replace the redundant computation with a reference to the earlier (stored) result
Common Problems in Code Improvement

- This strategy is typical of most compiler optimizations
 - First, discover opportunities through program analysis
 - Then, modify the IR to take advantage of the opportunities
 - Historically, goal usually was to decrease execution time
 - Other possibilities: reduce space, power, ...
Issues (1)

- Safety – transformation must not change program meaning
 - Must generate correct results
 - Can’t generate spurious errors
 - Optimizations must be conservative
 - Large part of analysis goes towards proving safety
 - Can pay off to speculate (be optimistic) but then need to recover if reality is different
Issues (2)

- Profitability
 - If a transformation is possible, is it profitable?
 - Example: loop unrolling
 - Can increase amount of work done on each iteration, i.e., reduce loop overhead
 - Can eliminate duplicate operations done on separate iterations
Issues (3)

- Downside risks
 - Even if a transformation is generally worthwhile, need to factor in potential problems
 - For example:
 - Transformation might need more temporaries, putting additional pressure on registers
 - Increased code size could cause cache misses, or in bad cases, increase page working set
Example: Value Numbering

- Technique for eliminating redundant expressions: assign an identifying number $VN(n)$ to each expression
 - $VN(x+y)=VN(j)$ if $x+y$ and j have the same value
 - Use hashing over value numbers for efficiency

- Old idea (Balke 1968, Ershov 1954)
 - Invented for low-level, linear IRs
 - Equivalent methods exist for tree IRs, e.g., build a DAG
Uses of Value Numbers

- Improve the code
 - Replace redundant expressions
 - Simplify algebraic identities
 - Discover, fold, and propagate constant valued expressions
Local Value Numbering

Algorithm

- For each operation $o = <op, o1, o2>$ in a block
 1. Get value numbers for operands from hash lookup
 2. Hash $<op, VN(o1), VN(o2)>$ to get a value number for o
 (If op is commutative, sort $VN(o1), VN(o2)$ first)
 3. If o already has a value number, replace o with a
 reference to the value
 4. If $o1$ and $o2$ are constant, evaluate o at compile time
 and replace with an immediate load

- If hashing behaves well, this runs in linear time
Example

Code

\[
\begin{align*}
 a &= x + y \\
 b &= x + y \\
 a &= 17 \\
 c &= x + y
\end{align*}
\]
Bug in Simple Example

- If we use the original names, we get in trouble when a name is reused

Solutions

- Be clever about which copy of the value to use (e.g., use c=b in last statement)
- Create an extra temporary
- Rename around it (best!)
Renaming

- Idea: give each value a unique name
 \(a_i^j \) means \(i^{th} \) definition of \(a \) with \(VN = j \)
- Somewhat complex notation, but meaning is clear
- This is the idea behind SSA (Static Single Assignment)
 - Popular modern IR – exposes many opportunities for optimizations
Example Revisited

<table>
<thead>
<tr>
<th>Code</th>
<th>Rewritten</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a = x + y)</td>
<td></td>
</tr>
<tr>
<td>(b = x + y)</td>
<td></td>
</tr>
<tr>
<td>(a = 17)</td>
<td></td>
</tr>
<tr>
<td>(c = x + y)</td>
<td></td>
</tr>
</tbody>
</table>
Simple Extensions to Value Numbering

- **Constant folding**
 - Add a bit that records when a value is constant
 - Evaluate constant values at compile time
 - Replace op with load immediate

- **Algebraic identities**: \(x+0, x^1, x-x, \ldots \)
 - Many special cases
 - Switch on op to narrow down checks needed
 - Replace result with input VN
Larger Scopes

- This algorithm works on straight-line blocks of code (basic blocks)
 - Best possible results for single basic blocks
 - Loses all information when control flows to another block
- To go further we need to represent multiple blocks of code and the control flow between them
Basic Blocks

- **Definition**: A *basic block* is a maximal length sequence of straight-line code.

- **Properties**
 - Statements are executed sequentially.
 - If any statement executes, they all do (baring exceptions).

- In a linear IR, the first statement of a basic block is often called the *leader*.
Control Flow Graph (CFG)

- Nodes: basic blocks
 - Possible representations: linear 3-address code, expression-level AST, DAG
- Edges: include a directed edge from n1 to n2 if there is any possible way for control to transfer from block n1 to n2 during execution
Constructing Control Flow Graphs from Linear IRs

- Algorithm
 - Pass 1: Identify basic block leaders with a linear scan of the IR
 - Pass 2: Identify operations that end a block and add appropriate edges to the CFG to all possible successors
 - See your favorite compiler book for details

- For convenience, ensure that every block ends with conditional or unconditional jump
 - Code generator can pick the most convenient “fall-through” case later and eliminate unneeded jumps
Scope of Optimizations

- Optimization algorithms can work on units as small as a basic block or as large as a whole program.
- Local information is generally more precise and can lead to locally optimal results.
- Global information is less precise (lose information at join points in the graph), but exposes opportunities for improvements across basic blocks.
Optimization Categories (1)

- Local methods
 - Usually confined to basic blocks
 - Simplest to analyze and understand
 - Most precise information
Optimization Categories (2)

- **Superlocal methods**
 - Operate over *Extended Basic Blocks* (EBBs)
 - An EBB is a set of blocks b_1, b_2, \ldots, b_n where b_1 has multiple predecessors and each of the remaining blocks b_i ($2 \leq i \leq n$) have only b_{i-1} as its unique predecessor.
 - The EBB is entered only at b_1, but may have multiple exits.
 - A single block b_i can be the head of multiple EBBs (these EBBs form a tree rooted at b_i).
 - Use information discovered in earlier blocks to improve code in successors.
Optimization Categories (3)

- **Regional methods**
 - Operate over scopes larger than an EBB but smaller than an entire procedure/function/method
 - Typical example: loop body
 - Difference from superlocal methods is that there may be merge points in the graph (i.e., a block with two or more predecessors)
Optimization Categories (4)

- **Global methods**
 - Operate over entire procedures
 - Sometimes called *intraprocedural* methods
 - Motivation is that local optimizations sometimes have bad consequences in larger context
 - Procedure/method/function is a natural unit for analysis, separate compilation, etc.
 - Almost always need global *data-flow* analysis information for these
Optimization Categories (5)

- **Whole-program methods**
 - Operate over more than one procedure
 - Sometimes called *interprocedural* methods
 - Challenges: name scoping and parameter binding issues at procedure boundaries
 - Classic examples: inline method substitution, interprocedural constant propagation
 - Common in aggressive JIT compilers and optimizing compilers for object-oriented languages
Value Numbering Revisited

- Local Value Numbering
 - 1 block at a time
 - Strong local results
 - No cross-block effects
- Missed opportunities

```
m = a + b
n = a + b
```
```
p = c + d
r = c + d
```
```
q = a + b
r = c + d
```
```
e = b + 18
s = a + b
u = e + f
```
```
e = a + 17
t = c + d
u = e + f
```
```
y = a + b
w = c + d
x = e + f
```
```
y = a + b
z = c + d
```
Superlocal Value Numbering

- Idea: apply local method to EBBs
 - \{A,B\}, \{A,C,D\}, \{A,C,E\}
- Final info from A is initial info for B, C; final info from C is initial for D, E
- Gets reuse from ancestors
- Avoid reanalyzing A, C
- Doesn’t help with F, G
SSA Name Space (from before)

Code

\[
\begin{align*}
a_0^3 &= x_0^1 + y_0^2 \\
b_0^3 &= x_0^1 + y_0^2 \\
a_1^4 &= 17 \\
c_0^3 &= x_0^1 + y_0^2
\end{align*}
\]

Rewritten

\[
\begin{align*}
a_0^3 &= x_0^1 + y_0^2 \\
b_0^3 &= a_0^3 \\
a_1^4 &= 17 \\
c_0^3 &= a_0^3
\end{align*}
\]

- Unique name for each definition
- Name \(\Leftrightarrow \) VN
- \(a_0^3 \) is available to assign to \(c_0^3 \)
SSA Name Space

Two Principles
- Each name is defined by exactly one operation
- Each operand refers to exactly one definition

Need to deal with merge points
- Add Φ functions at merge points to reconcile names
- Use subscripts on variable names for uniqueness
Superlocal Value Numbering with All Bells & Whistles

- Finds more redundancies
- Little extra cost
- Still does nothing for F and G

\[\begin{align*}
\text{A:} & \quad m_0 &= a_0 + b_0 \\
& \quad n_0 &= a_0 + b_0 \\
\text{B:} & \quad p_0 &= c_0 + d_0 \\
& \quad r_0 &= c_0 + d_0 \\
\text{C:} & \quad q_0 &= a_0 + b_0 \\
& \quad r_1 &= c_0 + d_0 \\
\text{D:} & \quad e_0 &= b_0 + 18 \\
& \quad s_0 &= a_0 + b_0 \\
& \quad u_0 &= e_0 + f_0 \\
\text{E:} & \quad e_1 &= a_0 + 17 \\
& \quad t_0 &= c_0 + d_0 \\
& \quad u_1 &= e_1 + f_0 \\
\text{F:} & \quad e_2 &= \Phi(e_0, e_1) \\
& \quad u_2 &= \Phi(u_0, u_1) \\
\text{G:} & \quad r_2 &= \Phi(r_0, r_1) \\
& \quad y_0 &= a_0 + b_0 \\
& \quad z_0 &= c_0 + d_0 \\
\end{align*} \]
Larger Scopes

- Still have not helped F and G
- Problem: multiple predecessors
- Must decide what facts hold in F and in G
 - For G, combine B & F?
 - Merging states is expensive
 - Fall back on what we know

\[
\begin{align*}
A &: m_0 = a_0 + b_0 \\
&: n_0 = a_0 + b_0 \\
B &: p_0 = c_0 + d_0 \\
&: r_0 = c_0 + d_0 \\
C &: q_0 = a_0 + b_0 \\
&: r_1 = c_0 + d_0 \\
D &: e_0 = b_0 + 18 \\
&: s_0 = a_0 + b_0 \\
&: u_0 = e_0 + f_0 \\
E &: e_1 = a_0 + 17 \\
&: t_0 = c_0 + d_0 \\
&: u_1 = e_1 + f_0 \\
F &: e_2 = \Phi(e_0, e_1) \\
&: u_2 = \Phi(u_0, u_1) \\
G &: r_2 = \Phi(r_0, r_1) \\
&: y_0 = a_0 + b_0 \\
&: z_0 = c_0 + d_0 \\
&: v_0 = a_0 + b_0 \\
&: w_0 = c_0 + d_0 \\
&: x_0 = e_2 + f_0
\end{align*}
\]
Dominators

- Definition
 - \(x \) dominates \(y \) iff every path from the entry of the control-flow graph to \(y \) includes \(x \)
 - By definition, \(x \) dominates \(x \)

- Associate a Dom set with each node
 - \(| \text{Dom}(x) | \geq 1 \)

- Many uses in analysis and transformation
 - Finding loops, building SSA form, code motion
Immediate Dominators

- For any node \(x \), there is a \(y \) in \(\text{Dom}(x) \) closest to \(x \)
- This is the *immediate dominator* of \(x \)
 - Notation: \(\text{IDom}(x) \)
Dominator Sets

Block Dom IDom

A

m_0 = a_0 + b_0
n_0 = a_0 + b_0

B

p_0 = c_0 + d_0
r_0 = c_0 + d_0

C

q_0 = a_0 + b_0
r_1 = c_0 + d_0

D

e_0 = b_0 + 18
s_0 = a_0 + b_0
u_0 = e_0 + f_0

E

e_1 = a_0 + 17
t_0 = c_0 + d_0
u_1 = e_1 + f_0

F

e_2 = \Phi(e_0, e_1)
u_2 = \Phi(u_0, u_1)

G

r_2 = \Phi(r_0, r_1)
y_0 = a_0 + b_0
z_0 = c_0 + d_0

v_0 = a_0 + b_0
w_0 = c_0 + d_0
x_0 = e_2 + f_0
Dominator Value Numbering

- Still looking for a way to handle F and G
- Idea: Use info from IDom(x) to start analysis of x
 - Use C for F and A for G
- Dominator VN Technique (DVNT)
DVNT algorithm

- Use superlocal algorithm on extended basic blocks
 - Use scoped hash tables & SSA name space as before
- Start each node with table from its IDOM
- No values flow along back edges (i.e., loops)
- Constant folding, algebraic identities as before
Dominator Value Numbering

- **Advantages**
 - Finds more redundancy
 - Little extra cost

- **Shortcomings**
 - Misses some opportunities (common calculations in ancestors that are not IDOMs)
 - Doesn’t handle loops or other back edges

- $m_0 = a_0 + b_0$
- $n_0 = a_0 + b_0$
- $p_0 = c_0 + d_0$
- $r_0 = c_0 + d_0$
- $q_0 = a_0 + b_0$
- $r_1 = c_0 + d_0$
- $e_0 = b_0 + 18$
- $s_0 = a_0 + b_0$
- $u_0 = e_0 + f_0$
- $e_1 = a_0 + 17$
- $t_0 = c_0 + d_0$
- $u_1 = e_1 + f_0$
- $e_2 = \Phi(e_0,e_1)$
- $u_2 = \Phi(u_0,u_1)$
- $v_0 = a_0 + b_0$
- $w_0 = c_0 + d_0$
- $x_0 = e_2 + f_0$
The Story So Far…

- Local algorithm
- Superlocal extension
 - Some local methods extend cleanly to superlocal scopes
- Dominator VN Technique (DVNT)
- All of these propagate along forward edges
- None are global
Coming Attractions

- Data-flow analysis
 - Provides global solution to redundant expression analysis
 - Catches some things missed by DVNT, but misses some others
 - Generalizes to many other analysis problems, both forward and backward

- Transformations
 - A catalog of some of the things a compiler can do with the analysis information