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Agenda

 Optimization
 Goals

 Scope: local, superlocal, regional, global 
(intraprocedural), interprocedural

 Control flow graphs

 Value numbering

 Dominators

 Ref.: Cooper/Torczon ch. 8
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Code Improvement – How?

 Pick a better algorithm(!)

 Use machine resources effectively

 Instruction selection & scheduling

 Register allocation
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Code Improvement (2)

 Local optimizations – basic blocks

 Algebraic simplifications

 Constant folding

 Common subexpression elimination (i.e., 
redundancy elimination)

 Dead code elimination

 Specialize computation based on context

 etc., etc., …
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Code Improvement (3)

 Global optimizations

 Code motion

 Moving invariant computations out of loops

 Strength reduction (replace multiplications 
by repeated additions, for example)

 Global common subexpression elimination

 Global register allocation

 Many others…
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“Optimization”

 None of these improvements are truly 
“optimal”

 Hard problems

 Proofs of optimality assume artificial 
restrictions

 Best we can do is to improve things
 Most (much?) (some?) of the time
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Example: A[i,j]

 Without any surrounding context, need to 
generate code to calculate

address(A)

+ (i-low1(A)) * (high2(A)-low2(a)+1) * size(A)

+ (j-low2(A)) * size(A)

 lowi and highi are subscript bounds in dimension i

 address(A) is the runtime address of first element 
of A

 … And we really should be checking that i, j 
are in bounds
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Some Optimizations for A[i,j]

 With more context, we can do better

 Examples

 If A is local, with known bounds, much of the 
computation can be done at compile time

 If A[i,j] is in a loop where i and j change 
systematically, we probably can replace 
multiplications with additions each time around 
the loop to reference successive rows/columns

 Even if not, we can move “loop-invariant” parts of the 
calculation outside the loop
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Optimization Phase

 Goal

 Discover, at compile time, information 
about the runtime behavior of the 
program, and use that information to 
improve the generated code 
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A First Running Example: 
Redundancy Elimination

 An expression x+y is redundant at a program 
point iff, along every path from the 
procedure’s entry, it has been evaluated and 
its constituent subexpressions (x and y) have 
not been redefined

 If the compiler can prove the expression is 
redundant
 Can store the result of the earlier evaluation

 Can replace the redundant computation with a 
reference to the earlier (stored) result
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Common Problems in Code 
Improvement

 This strategy is typical of most compiler 
optimizations
 First, discover opportunities through 

program analysis

 Then, modify the IR to take advantage of 
the opportunities
 Historically, goal usually was to decrease 

execution time

 Other possibilities: reduce space, power, …



Issues (1)

 Safety – transformation must not change 
program meaning
 Must generate correct results

 Can’t generate spurious errors

 Optimizations must be conservative

 Large part of analysis goes towards proving 
safety

 Can pay off to speculate (be optimistic) but 
then need to recover if reality is different
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Issues (2)

 Profitibility

 If a transformation is possible, is it 
profitable?

 Example: loop unrolling

 Can increase amount of work done on each 
iteration, i.e., reduce loop overhead

 Can eliminate duplicate operations done on 
separate iterations
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Issues (3)

 Downside risks

 Even if a transformation is generally 
worthwhile, need to factor in potential 
problems

 For example:

 Transformation might need more temporaries, 
putting additional pressure on registers

 Increased code size could cause cache misses, 
or in bad cases, increase page working set
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Example: Value Numbering

 Technique for eliminating redundant 
expressions: assign an identifying number 
VN(n) to each expression

 VN(x+y)=VN(j) if x+y and j have the same value

 Use hashing over value numbers for effeciency

 Old idea (Balke 1968, Ershov 1954)

 Invented for low-level, linear IRs

 Equivalent methods exist for tree IRs, e.g., build a 
DAG
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Uses of Value Numbers

 Improve the code

 Replace redundant expressions

 Simplify algebraic identities

 Discover, fold, and propagate constant 
valued expressions
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Local Value Numbering

 Algorithm
 For each operation o = <op, o1,o2> in a block

1. Get value numbers for operands from hash lookup

2. Hash <op, VN(o1), VN(o2)> to get a value number for o

(If op is commutative, sort VN(o1), VN(o2) first)

3. If o already has a value number, replace o with a 
reference to the value

4. If o1 and o2 are constant, evaluate o at compile time 
and replace with an immediate load

 If hashing behaves well, this runs in linear 
time
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Example

Code Rewritten

a   =  x   +   y

b   =  x   +   y

a   =  17

c   =  x   +   y
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Bug in Simple Example

 If we use the original names, we get in 
trouble when a name is reused

 Solutions

 Be clever about which copy of the value to 
use (e.g., use c=b in last statement)

 Create an extra temporary

 Rename around it (best!)
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Renaming

 Idea: give each value a unique name
ai

j means ith definition of a with VN = j

 Somewhat complex notation, but 
meaning is clear

 This is the idea behind SSA (Static 
Single Assignment)
 Popular modern IR – exposes many 

opportunities for optimizations
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Example Revisited

Code Rewritten

a   =  x   +   y

b   =  x   +   y

a   =  17

c   =  x   +   y
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Simple Extensions to Value 
Numbering

 Constant folding

 Add a bit that records when a value is constant

 Evaluate constant values at compile time

 Replace op with load immediate

 Algebraic identities: x+0, x*1, x-x, …

 Many special cases

 Switch on op to narrow down checks needed

 Replace result with input VN
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Larger Scopes

 This algorithm works on straight-line 
blocks of code (basic blocks)

 Best possible results for single basic blocks

 Loses all information when control flows to 
another block

 To go further we need to represent 
multiple blocks of code and the control 
flow between them
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Basic Blocks

 Definition: A basic block is a maximal 
length sequence of straight-line code

 Properties
 Statements are executed sequentially

 If any statement executes, they all do
(baring exceptions)

 In a linear IR, the first statement of a 
basic block is often called the leader
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Control Flow Graph (CFG)

 Nodes: basic blocks

 Possible representations: linear 3-address 
code, expression-level AST, DAG

 Edges: include a directed edge from n1 
to n2 if there is any possible way for 
control to transfer from block n1 to n2 
during execution
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Constructing Control Flow 
Graphs from Linear IRs

 Algorithm
 Pass 1: Identify basic block leaders with a linear 

scan of the IR
 Pass 2: Identify operations that end a block and 

add appropriate edges to the CFG to all possible 
successors

 See your favorite compiler book for details

 For convenience, ensure that every block 
ends with conditional or unconditional jump
 Code generator can pick the most convenient “fall-

through” case later and eliminate unneeded jumps
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Scope of Optimizations

 Optimization algorithms can work on units as 
small as a basic block or as large as a whole 
program

 Local information is generally more precise 
and can lead to locally optimal results

 Global information is less precise (lose 
information at join points in the graph), but 
exposes opportunities for improvements 
across basic blocks
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Optimization Categories (1)

 Local methods

 Usually confined to basic blocks

 Simplest to analyze and understand

 Most precise information
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Optimization Categories (2)

 Superlocal methods
 Operate over Extended Basic Blocks (EBBs)

 An EBB is a set of blocks b1, b2, …, bn where b1 has 
multiple predecessors and each of the remaining blocks 
bi (2≤i≤n) have only bi-1 as its unique predecessor

 The EBB is entered only at b1, but may have multiple 
exits

 A single block bi can be the head of multiple EBBs (these 
EBBs form a tree rooted at bi)

 Use information discovered in earlier blocks to 
improve code in successors
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Optimization Categories (3)

 Regional methods
 Operate over scopes larger than an EBB 

but smaller than an entire procedure/ 
function/method

 Typical example: loop body

 Difference from superlocal methods is that 
there may be merge points in the graph 
(i.e., a block with two or more 
predecessors)
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Optimization Categories (4)

 Global methods
 Operate over entire procedures

 Sometimes called intraprocedural methods

 Motivation is that local optimizations sometimes 
have bad consequences in larger context

 Procedure/method/function is a natural unit for 
analysis, separate compilation, etc.

 Almost always need global data-flow analysis 
information for these
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Optimization Categories (5)

 Whole-program methods
 Operate over more than one procedure

 Sometimes called interprocedural methods

 Challenges: name scoping and parameter binding 
issues at procedure boundaries

 Classic examples: inline method substitution, 
interprocedural constant propagation

 Common in aggressive JIT compilers and 
optimizing compilers for object-oriented languages
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Value Numbering Revisited

 Local Value 
Numbering

 1 block at a time

 Strong local results

 No cross-block 
effects

 Missed opportunities

m = a + b
n = a + b

A

p = c + d
r = c + d

B
q = a + b
r = c + d

C

e = b + 18
s = a + b
u = e + f

D
e = a + 17
t = c + d
u = e + f

E

v = a + b
w = c + d
x = e + f

F

y = a + b
z = c + d

G
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Superlocal Value Numbering

 Idea: apply local 
method to EBBs
 {A,B}, {A,C,D}, {A,C,E}

 Final info from A is 
initial info for B, C; final 
info from C is initial for 
D, E

 Gets reuse from 
ancestors

 Avoid reanalyzing A, C

 Doesn’t help with F, G

m = a + b
n = a + b

A

p = c + d
r = c + d

B
q = a + b
r = c + d

C

e = b + 18
s = a + b
u = e + f

D
e = a + 17
t = c + d
u = e + f

E

v = a + b
w = c + d
x = e + f

F

y = a + b
z = c + d

G
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SSA Name Space (from before)

Code Rewritten
a0

3 = x0
1 + y0

2 a0
3 = x0

1 + y0
2

b0
3 = x0

1 + y0
2 b0

3 = a0
3

a1
4 = 17 a1

4 = 17

c0
3 = x0

1 + y0
2 c0

3 = a0
3

 Unique name for each definition

 Name  VN

 a0
3 is available to assign to c0

3 
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SSA Name Space

 Two Principles

 Each name is defined by exactly one operation

 Each operand refers to exactly one definition

 Need to deal with merge points

 Add Φ functions at merge points to reconcile 
names

 Use subscripts on variable names for uniqueness
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Superlocal Value Numbering 
with All Bells & Whistles

 Finds more 
redundancies

 Little extra cost

 Still does nothing for 
F and G

m0 = a0 + b0

n0 = a0 + b0

A

p0 = c0 + d0

r0 = c0 + d0

B
q0 = a0 + b0

r1 = c0 + d0

C

e0 = b0 + 18
s0 = a0 + b0

u0 = e0 + f0

D
e1 = a0 + 17
t0 = c0 + d0

u1 = e1 + f0

E

e2 = Φ(e0,e1)
u2 = Φ(u0,u1)
v0 = a0 + b0

w0 = c0 + d0

x0 = e2 + f0

F

r2 = Φ(r0,r1)
y0 = a0 + b0

z0 = c0 + d0

G
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Larger Scopes

 Still have not helped F 
and G

 Problem: multiple 
predecessors

 Must decide what facts 
hold in F and in G
 For G, combine B & F?

 Merging states is 
expensive

 Fall back on what we 
know

m0 = a0 + b0

n0 = a0 + b0

A

p0 = c0 + d0

r0 = c0 + d0

B
q0 = a0 + b0

r1 = c0 + d0

C

e0 = b0 + 18
s0 = a0 + b0

u0 = e0 + f0

D
e1 = a0 + 17
t0 = c0 + d0

u1 = e1 + f0

E

e2 = Φ(e0,e1)
u2 = Φ(u0,u1)
v0 = a0 + b0

w0 = c0 + d0

x0 = e2 + f0

F

r2 = Φ(r0,r1)
y0 = a0 + b0

z0 = c0 + d0

G
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Dominators

 Definition

 x dominates y iff every path from the entry of the 
control-flow graph to y includes x

 By definition, x dominates x

 Associate a Dom set with each node

 | Dom(x) | ≥ 1

 Many uses in analysis and transformation

 Finding loops, building SSA form, code motion
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Immediate Dominators

 For any node x, there is a y in Dom(x) 
closest to x

 This is the immediate dominator of x 

 Notation: IDom(x)
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Dominator Sets
m0 = a0 + b0

n0 = a0 + b0

A

p0 = c0 + d0

r0 = c0 + d0

B
q0 = a0 + b0

r1 = c0 + d0

C

e0 = b0 + 18
s0 = a0 + b0

u0 = e0 + f0

D
e1 = a0 + 17
t0 = c0 + d0

u1 = e1 + f0

E

e2 = Φ(e0,e1)
u2 = Φ(u0,u1)
v0 = a0 + b0

w0 = c0 + d0

x0 = e2 + f0

F

r2 = Φ(r0,r1)
y0 = a0 + b0

z0 = c0 + d0

G

Block  Dom  IDom
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Dominator Value Numbering
m0 = a0 + b0

n0 = a0 + b0

A

p0 = c0 + d0

r0 = c0 + d0

B
q0 = a0 + b0

r1 = c0 + d0

C

e0 = b0 + 18
s0 = a0 + b0

u0 = e0 + f0

D
e1 = a0 + 17
t0 = c0 + d0

u1 = e1 + f0

E

e2 = Φ(e0,e1)
u2 = Φ(u0,u1)
v0 = a0 + b0

w0 = c0 + d0

x0 = e2 + f0

F

r2 = Φ(r0,r1)
y0 = a0 + b0

z0 = c0 + d0

G

 Still looking for a way 
to handle F and G

 Idea: Use info from 
IDom(x) to start 
analysis of x
 Use C for F and 

A for G

 Dominator VN
Technique (DVNT)
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DVNT algorithm

 Use superlocal algorithm on extended basic 
blocks

 Use scoped hash tables & SSA name space as 
before

 Start each node with table from its IDOM

 No values flow along back edges (i.e., loops)

 Constant folding, algebraic identities as 
before
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Dominator Value Numbering
m0 = a0 + b0

n0 = a0 + b0

A

p0 = c0 + d0

r0 = c0 + d0

B
q0 = a0 + b0

r1 = c0 + d0

C

e0 = b0 + 18
s0 = a0 + b0

u0 = e0 + f0

D
e1 = a0 + 17
t0 = c0 + d0

u1 = e1 + f0

E

e2 = Φ(e0,e1)
u2 = Φ(u0,u1)
v0 = a0 + b0

w0 = c0 + d0

x0 = e2 + f0

F

r2 = Φ(r0,r1)
y0 = a0 + b0

z0 = c0 + d0

G

 Advantages
 Finds more redundancy

 Little extra cost

 Shortcomings
 Misses some 

opportunities (common 
calculations in ancestors 
that are not IDOMs)

 Doesn’t handle loops or 
other back edges
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The Story So Far…

 Local algorithm

 Superlocal extension
 Some local methods extend cleanly to 

superlocal scopes

 Dominator VN Technique (DVNT)

 All of these propagate along forward 
edges

 None are global
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Coming Attractions

 Data-flow analysis

 Provides global solution to redundant expression 
analysis

 Catches some things missed by DVNT, but misses some 
others

 Generalizes to many other analysis problems, both 
forward and backward

 Transformations

 A catalog of some of the things a compiler can do 
with the analysis information


