
11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-1

CSE P 501 – Compilers

Introduction to Optimization

Hal Perkins

Autumn 2009

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-2

Agenda

 Optimization
 Goals

 Scope: local, superlocal, regional, global
(intraprocedural), interprocedural

 Control flow graphs

 Value numbering

 Dominators

 Ref.: Cooper/Torczon ch. 8

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-3

Code Improvement – How?

 Pick a better algorithm(!)

 Use machine resources effectively

 Instruction selection & scheduling

 Register allocation

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-4

Code Improvement (2)

 Local optimizations – basic blocks

 Algebraic simplifications

 Constant folding

 Common subexpression elimination (i.e.,
redundancy elimination)

 Dead code elimination

 Specialize computation based on context

 etc., etc., …

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-5

Code Improvement (3)

 Global optimizations

 Code motion

 Moving invariant computations out of loops

 Strength reduction (replace multiplications
by repeated additions, for example)

 Global common subexpression elimination

 Global register allocation

 Many others…

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-6

“Optimization”

 None of these improvements are truly
“optimal”

 Hard problems

 Proofs of optimality assume artificial
restrictions

 Best we can do is to improve things
 Most (much?) (some?) of the time

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-7

Example: A[i,j]

 Without any surrounding context, need to
generate code to calculate

address(A)

+ (i-low1(A)) * (high2(A)-low2(a)+1) * size(A)

+ (j-low2(A)) * size(A)

 lowi and highi are subscript bounds in dimension i

 address(A) is the runtime address of first element
of A

 … And we really should be checking that i, j
are in bounds

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-8

Some Optimizations for A[i,j]

 With more context, we can do better

 Examples

 If A is local, with known bounds, much of the
computation can be done at compile time

 If A[i,j] is in a loop where i and j change
systematically, we probably can replace
multiplications with additions each time around
the loop to reference successive rows/columns

 Even if not, we can move “loop-invariant” parts of the
calculation outside the loop

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-9

Optimization Phase

 Goal

 Discover, at compile time, information
about the runtime behavior of the
program, and use that information to
improve the generated code

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-10

A First Running Example:
Redundancy Elimination

 An expression x+y is redundant at a program
point iff, along every path from the
procedure’s entry, it has been evaluated and
its constituent subexpressions (x and y) have
not been redefined

 If the compiler can prove the expression is
redundant
 Can store the result of the earlier evaluation

 Can replace the redundant computation with a
reference to the earlier (stored) result

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-11

Common Problems in Code
Improvement

 This strategy is typical of most compiler
optimizations
 First, discover opportunities through

program analysis

 Then, modify the IR to take advantage of
the opportunities
 Historically, goal usually was to decrease

execution time

 Other possibilities: reduce space, power, …

Issues (1)

 Safety – transformation must not change
program meaning
 Must generate correct results

 Can’t generate spurious errors

 Optimizations must be conservative

 Large part of analysis goes towards proving
safety

 Can pay off to speculate (be optimistic) but
then need to recover if reality is different

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-12

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-13

Issues (2)

 Profitibility

 If a transformation is possible, is it
profitable?

 Example: loop unrolling

 Can increase amount of work done on each
iteration, i.e., reduce loop overhead

 Can eliminate duplicate operations done on
separate iterations

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-14

Issues (3)

 Downside risks

 Even if a transformation is generally
worthwhile, need to factor in potential
problems

 For example:

 Transformation might need more temporaries,
putting additional pressure on registers

 Increased code size could cause cache misses,
or in bad cases, increase page working set

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-15

Example: Value Numbering

 Technique for eliminating redundant
expressions: assign an identifying number
VN(n) to each expression

 VN(x+y)=VN(j) if x+y and j have the same value

 Use hashing over value numbers for effeciency

 Old idea (Balke 1968, Ershov 1954)

 Invented for low-level, linear IRs

 Equivalent methods exist for tree IRs, e.g., build a
DAG

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-16

Uses of Value Numbers

 Improve the code

 Replace redundant expressions

 Simplify algebraic identities

 Discover, fold, and propagate constant
valued expressions

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-17

Local Value Numbering

 Algorithm
 For each operation o = <op, o1,o2> in a block

1. Get value numbers for operands from hash lookup

2. Hash <op, VN(o1), VN(o2)> to get a value number for o

(If op is commutative, sort VN(o1), VN(o2) first)

3. If o already has a value number, replace o with a
reference to the value

4. If o1 and o2 are constant, evaluate o at compile time
and replace with an immediate load

 If hashing behaves well, this runs in linear
time

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-18

Example

Code Rewritten

a = x + y

b = x + y

a = 17

c = x + y

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-19

Bug in Simple Example

 If we use the original names, we get in
trouble when a name is reused

 Solutions

 Be clever about which copy of the value to
use (e.g., use c=b in last statement)

 Create an extra temporary

 Rename around it (best!)

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-20

Renaming

 Idea: give each value a unique name
ai

j means ith definition of a with VN = j

 Somewhat complex notation, but
meaning is clear

 This is the idea behind SSA (Static
Single Assignment)
 Popular modern IR – exposes many

opportunities for optimizations

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-21

Example Revisited

Code Rewritten

a = x + y

b = x + y

a = 17

c = x + y

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-22

Simple Extensions to Value
Numbering

 Constant folding

 Add a bit that records when a value is constant

 Evaluate constant values at compile time

 Replace op with load immediate

 Algebraic identities: x+0, x*1, x-x, …

 Many special cases

 Switch on op to narrow down checks needed

 Replace result with input VN

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-23

Larger Scopes

 This algorithm works on straight-line
blocks of code (basic blocks)

 Best possible results for single basic blocks

 Loses all information when control flows to
another block

 To go further we need to represent
multiple blocks of code and the control
flow between them

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-24

Basic Blocks

 Definition: A basic block is a maximal
length sequence of straight-line code

 Properties
 Statements are executed sequentially

 If any statement executes, they all do
(baring exceptions)

 In a linear IR, the first statement of a
basic block is often called the leader

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-25

Control Flow Graph (CFG)

 Nodes: basic blocks

 Possible representations: linear 3-address
code, expression-level AST, DAG

 Edges: include a directed edge from n1
to n2 if there is any possible way for
control to transfer from block n1 to n2
during execution

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-26

Constructing Control Flow
Graphs from Linear IRs

 Algorithm
 Pass 1: Identify basic block leaders with a linear

scan of the IR
 Pass 2: Identify operations that end a block and

add appropriate edges to the CFG to all possible
successors

 See your favorite compiler book for details

 For convenience, ensure that every block
ends with conditional or unconditional jump
 Code generator can pick the most convenient “fall-

through” case later and eliminate unneeded jumps

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-27

Scope of Optimizations

 Optimization algorithms can work on units as
small as a basic block or as large as a whole
program

 Local information is generally more precise
and can lead to locally optimal results

 Global information is less precise (lose
information at join points in the graph), but
exposes opportunities for improvements
across basic blocks

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-28

Optimization Categories (1)

 Local methods

 Usually confined to basic blocks

 Simplest to analyze and understand

 Most precise information

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-29

Optimization Categories (2)

 Superlocal methods
 Operate over Extended Basic Blocks (EBBs)

 An EBB is a set of blocks b1, b2, …, bn where b1 has
multiple predecessors and each of the remaining blocks
bi (2≤i≤n) have only bi-1 as its unique predecessor

 The EBB is entered only at b1, but may have multiple
exits

 A single block bi can be the head of multiple EBBs (these
EBBs form a tree rooted at bi)

 Use information discovered in earlier blocks to
improve code in successors

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-30

Optimization Categories (3)

 Regional methods
 Operate over scopes larger than an EBB

but smaller than an entire procedure/
function/method

 Typical example: loop body

 Difference from superlocal methods is that
there may be merge points in the graph
(i.e., a block with two or more
predecessors)

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-31

Optimization Categories (4)

 Global methods
 Operate over entire procedures

 Sometimes called intraprocedural methods

 Motivation is that local optimizations sometimes
have bad consequences in larger context

 Procedure/method/function is a natural unit for
analysis, separate compilation, etc.

 Almost always need global data-flow analysis
information for these

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-32

Optimization Categories (5)

 Whole-program methods
 Operate over more than one procedure

 Sometimes called interprocedural methods

 Challenges: name scoping and parameter binding
issues at procedure boundaries

 Classic examples: inline method substitution,
interprocedural constant propagation

 Common in aggressive JIT compilers and
optimizing compilers for object-oriented languages

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-33

Value Numbering Revisited

 Local Value
Numbering

 1 block at a time

 Strong local results

 No cross-block
effects

 Missed opportunities

m = a + b
n = a + b

A

p = c + d
r = c + d

B
q = a + b
r = c + d

C

e = b + 18
s = a + b
u = e + f

D
e = a + 17
t = c + d
u = e + f

E

v = a + b
w = c + d
x = e + f

F

y = a + b
z = c + d

G

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-34

Superlocal Value Numbering

 Idea: apply local
method to EBBs
 {A,B}, {A,C,D}, {A,C,E}

 Final info from A is
initial info for B, C; final
info from C is initial for
D, E

 Gets reuse from
ancestors

 Avoid reanalyzing A, C

 Doesn’t help with F, G

m = a + b
n = a + b

A

p = c + d
r = c + d

B
q = a + b
r = c + d

C

e = b + 18
s = a + b
u = e + f

D
e = a + 17
t = c + d
u = e + f

E

v = a + b
w = c + d
x = e + f

F

y = a + b
z = c + d

G

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-35

SSA Name Space (from before)

Code Rewritten
a0

3 = x0
1 + y0

2 a0
3 = x0

1 + y0
2

b0
3 = x0

1 + y0
2 b0

3 = a0
3

a1
4 = 17 a1

4 = 17

c0
3 = x0

1 + y0
2 c0

3 = a0
3

 Unique name for each definition

 Name  VN

 a0
3 is available to assign to c0

3

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-36

SSA Name Space

 Two Principles

 Each name is defined by exactly one operation

 Each operand refers to exactly one definition

 Need to deal with merge points

 Add Φ functions at merge points to reconcile
names

 Use subscripts on variable names for uniqueness

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-37

Superlocal Value Numbering
with All Bells & Whistles

 Finds more
redundancies

 Little extra cost

 Still does nothing for
F and G

m0 = a0 + b0

n0 = a0 + b0

A

p0 = c0 + d0

r0 = c0 + d0

B
q0 = a0 + b0

r1 = c0 + d0

C

e0 = b0 + 18
s0 = a0 + b0

u0 = e0 + f0

D
e1 = a0 + 17
t0 = c0 + d0

u1 = e1 + f0

E

e2 = Φ(e0,e1)
u2 = Φ(u0,u1)
v0 = a0 + b0

w0 = c0 + d0

x0 = e2 + f0

F

r2 = Φ(r0,r1)
y0 = a0 + b0

z0 = c0 + d0

G

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-38

Larger Scopes

 Still have not helped F
and G

 Problem: multiple
predecessors

 Must decide what facts
hold in F and in G
 For G, combine B & F?

 Merging states is
expensive

 Fall back on what we
know

m0 = a0 + b0

n0 = a0 + b0

A

p0 = c0 + d0

r0 = c0 + d0

B
q0 = a0 + b0

r1 = c0 + d0

C

e0 = b0 + 18
s0 = a0 + b0

u0 = e0 + f0

D
e1 = a0 + 17
t0 = c0 + d0

u1 = e1 + f0

E

e2 = Φ(e0,e1)
u2 = Φ(u0,u1)
v0 = a0 + b0

w0 = c0 + d0

x0 = e2 + f0

F

r2 = Φ(r0,r1)
y0 = a0 + b0

z0 = c0 + d0

G

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-39

Dominators

 Definition

 x dominates y iff every path from the entry of the
control-flow graph to y includes x

 By definition, x dominates x

 Associate a Dom set with each node

 | Dom(x) | ≥ 1

 Many uses in analysis and transformation

 Finding loops, building SSA form, code motion

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-40

Immediate Dominators

 For any node x, there is a y in Dom(x)
closest to x

 This is the immediate dominator of x

 Notation: IDom(x)

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-41

Dominator Sets
m0 = a0 + b0

n0 = a0 + b0

A

p0 = c0 + d0

r0 = c0 + d0

B
q0 = a0 + b0

r1 = c0 + d0

C

e0 = b0 + 18
s0 = a0 + b0

u0 = e0 + f0

D
e1 = a0 + 17
t0 = c0 + d0

u1 = e1 + f0

E

e2 = Φ(e0,e1)
u2 = Φ(u0,u1)
v0 = a0 + b0

w0 = c0 + d0

x0 = e2 + f0

F

r2 = Φ(r0,r1)
y0 = a0 + b0

z0 = c0 + d0

G

Block Dom IDom

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-42

Dominator Value Numbering
m0 = a0 + b0

n0 = a0 + b0

A

p0 = c0 + d0

r0 = c0 + d0

B
q0 = a0 + b0

r1 = c0 + d0

C

e0 = b0 + 18
s0 = a0 + b0

u0 = e0 + f0

D
e1 = a0 + 17
t0 = c0 + d0

u1 = e1 + f0

E

e2 = Φ(e0,e1)
u2 = Φ(u0,u1)
v0 = a0 + b0

w0 = c0 + d0

x0 = e2 + f0

F

r2 = Φ(r0,r1)
y0 = a0 + b0

z0 = c0 + d0

G

 Still looking for a way
to handle F and G

 Idea: Use info from
IDom(x) to start
analysis of x
 Use C for F and

A for G

 Dominator VN
Technique (DVNT)

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-43

DVNT algorithm

 Use superlocal algorithm on extended basic
blocks

 Use scoped hash tables & SSA name space as
before

 Start each node with table from its IDOM

 No values flow along back edges (i.e., loops)

 Constant folding, algebraic identities as
before

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-44

Dominator Value Numbering
m0 = a0 + b0

n0 = a0 + b0

A

p0 = c0 + d0

r0 = c0 + d0

B
q0 = a0 + b0

r1 = c0 + d0

C

e0 = b0 + 18
s0 = a0 + b0

u0 = e0 + f0

D
e1 = a0 + 17
t0 = c0 + d0

u1 = e1 + f0

E

e2 = Φ(e0,e1)
u2 = Φ(u0,u1)
v0 = a0 + b0

w0 = c0 + d0

x0 = e2 + f0

F

r2 = Φ(r0,r1)
y0 = a0 + b0

z0 = c0 + d0

G

 Advantages
 Finds more redundancy

 Little extra cost

 Shortcomings
 Misses some

opportunities (common
calculations in ancestors
that are not IDOMs)

 Doesn’t handle loops or
other back edges

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-45

The Story So Far…

 Local algorithm

 Superlocal extension
 Some local methods extend cleanly to

superlocal scopes

 Dominator VN Technique (DVNT)

 All of these propagate along forward
edges

 None are global

11/3/2009 © 2002-09 Hal Perkins & UW CSE Q-46

Coming Attractions

 Data-flow analysis

 Provides global solution to redundant expression
analysis

 Catches some things missed by DVNT, but misses some
others

 Generalizes to many other analysis problems, both
forward and backward

 Transformations

 A catalog of some of the things a compiler can do
with the analysis information

