CSE P 501 – Compilers

Instruction Scheduling

Hal Perkins

Autumn 2009
Agenda

- Instruction scheduling issues – latencies
- List scheduling
Issues (1)

- Many operations have non-zero latencies
- Modern machines can issue several operations per cycle
 - Want to take advantage of multiple function units on chip
- Loads & Stores may or may not block
 - may be slots after load/store for other useful work
Issues (2)

- Branch costs vary
- Branches on some processors have delay slots
- Modern processors have heuristics to predict whether branches are taken and try to keep pipelines full

GOAL: Scheduler should reorder instructions to hide latencies, take advantage of multiple function units and delay slots, and help the processor effectively pipeline execution
Latencies for a Simple Example Machine

<table>
<thead>
<tr>
<th>Operation</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOAD</td>
<td>3</td>
</tr>
<tr>
<td>STORE</td>
<td>3</td>
</tr>
<tr>
<td>ADD</td>
<td>1</td>
</tr>
<tr>
<td>MULT</td>
<td>2</td>
</tr>
<tr>
<td>SHIFT</td>
<td>1</td>
</tr>
<tr>
<td>BRANCH</td>
<td>0 TO 8</td>
</tr>
</tbody>
</table>
Example: \(w = w \times 2 \times x \times y \times z \)

- **Simple schedule**
 1. LOAD \(r_1 \leftarrow w \)
 4. ADD \(r_1 \leftarrow r_1, r_1 \)
 5. LOAD \(r_2 \leftarrow x \)
 8. MULT \(r_1 \leftarrow r_1, r_2 \)
 9. LOAD \(r_2 \leftarrow y \)
 12. MULT \(r_1 \leftarrow r_1, r_2 \)
 13. LOAD \(r_2 \leftarrow z \)
 16. MULT \(r_1 \leftarrow r_1, r_2 \)
 18. STORE \(w \leftarrow r_1 \)
 21. \(r_1 \) free

 2 registers, 20 cycles

- **Loads early**
 1. LOAD \(r_1 \leftarrow w \)
 2. LOAD \(r_2 \leftarrow x \)
 3. LOAD \(r_3 \leftarrow y \)
 4. ADD \(r_1 \leftarrow r_1, r_1 \)
 5. MULT \(r_1 \leftarrow r_1, r_2 \)
 6. LOAD \(r_2 \leftarrow z \)
 7. MULT \(r_1 \leftarrow r_1, r_3 \)
 9. MULT \(r_1 \leftarrow r_1, r_2 \)
 11. STORE \(w \leftarrow r_1 \)
 14. \(r_1 \) is free

3 registers, 13 cycles
Instruction Scheduling

- Problem
 - Given a code fragment for some machine and latencies for each operation, reorder to minimize execution time

- Constraints
 - Produce correct code
 - Minimize wasted cycles
 - Avoid spilling registers
 - Do this efficiently
Precedence Graph

- Nodes n are operations
- Attributes of each node
 - type – kind of operation
 - delay – latency
- If node n_2 uses the result of node n_1, there is an edge $e = (n_1, n_2)$ in the graph
Example Graph

Code

- a LOAD r1 <- w
- b ADD r1 <- r1, r1
- c LOAD r2 <- x
- d MULT r1 <- r1, r2
- e LOAD r2 <- y
- f MULT r1 <- r1, r2
- g LOAD r2 <- z
- h MULT r1 <- r1, r2
- i STORE w <- r1
Schedules (1)

- A correct schedule S maps each node n into a non-negative integer representing its cycle number, and
 - $S(n) \geq 0$ for all nodes n (obvious)
 - If (n_1, n_2) is an edge, then $S(n_1) + \text{delay}(n_1) \leq S(n_2)$
 - For each type t there are no more operations of type t in any cycle than the target machine can issue
Schedules (2)

- The *length* of a schedule S, denoted $L(S)$ is
 \[L(S) = \max_n \left(S(n) + \text{delay}(n) \right) \]
- The goal is to find the shortest possible correct schedule
 - Other possible goals: minimize use of registers, power, space, ...
Constraints

- Main points
 - All operands must be available
 - Multiple operations can be ready at any given point
 - Moving operations can lengthen register lifetimes
 - Moving uses near definitions can shorten register lifetimes
 - Operations can have multiple predecessors
- Collectively this makes scheduling NP-complete
- Local scheduling is the simpler case
 - Straight-line code
 - Consistent, predictable latencies
Algorithm Overview

- Build a precedence graph P
- Compute a priority function over the nodes in P (typical: longest latency-weighted path)
- Use list scheduling to construct a schedule, one cycle at a time
 - Use queue of operations that are ready
 - At each cycle
 - Chose a ready operation and schedule it
 - Update ready queue
- Rename registers to avoid false dependencies and conflicts
List Scheduling Algorithm

\[\text{Cycle} = 1; \quad \text{Ready} = \text{leaves of } P; \quad \text{Active} = \text{empty}; \]
\[\text{while (Ready and/or Active are not empty)} \]
\[\quad \text{if (Ready is not empty)} \]
\[\quad \quad \text{remove an op from Ready;} \]
\[\quad \quad \text{S(op)} = \text{Cycle}; \]
\[\quad \quad \text{Active} = \text{Active} \cup \text{op}; \]
\[\quad \text{Cycle}++; \]
\[\quad \text{for each op in Active} \]
\[\quad \quad \text{if (S(op) + delay(op) \leq \text{Cycle})} \]
\[\quad \quad \quad \text{remove op from Active;} \]
\[\quad \quad \text{for each successor s of op in P} \]
\[\quad \quad \quad \text{if (s is ready – i.e., all operands available)} \]
\[\quad \quad \quad \quad \text{add s to Ready} \]
Forward vs Backwards

- Backward list scheduling
 - Work from the root to the leaves
 - Schedules instructions from end to beginning of the block
- In practice, compilers try both and pick the result that minimizes costs
 - Little extra expense since the precedence graph and other information can be reused
 - Different directions win in different cases
Beyond Basic Blocks

- List scheduling dominates, but moving beyond basic blocks can improve quality of the code. Some possibilities:
 - Schedule extended basic blocks
 - Watch for exit points – limits reordering or requires compensating
 - Trace scheduling
 - Use profiling information to select regions for scheduling using traces (paths) through code