* CSE P 501 — Compilers

Code Shape II — Objects & Classes
Hal Perkins
Autumn 2009

11/3/2000 @ 2002-00 Hal Perkire & Uw C5E

L-1

Agenda

= Object representation and layout
= Field access
= What is this?
= Object creation - new
= Method calls
= Dynamic dispatch

= Method tables
s Super

= Runtime type information

1132009 (& 2002-09 Hal Perkire & LW CSE

L-2

/I 7 3 4z 3

[class Ore {
int fag;
‘iﬂt it;
void sefTagl) {tag=1; 1}
it petTagl) {retrn tag; }
Aroid seftiintit) {this.it =it}
. Nt ot fretnit;
! ot
[_class Two extends One {
u'iﬂt it;
woid setTag(){
[tag = 2 _|E =3
irt oetThati) {fretenit +
vvoid resetlt() | super SBtiti42); }
¥

1131200

EXCREN
@3
$ What does this program print?

)

public static woid main(Gtingl] args) 4

r Twio two = new TWDEL
1N one = tw;

vore.setTagl);
wSystemn, out print nlone et Tag [0

e setlt(17);

s etTag (),

Swstern, out.print nltwo.get 0)
Systern, out, prind ol two .getThat(),

o resetl)

Systern. out. print il beo.getTH];

Systern, out. prind ol beo.getThat();

2002-09 Hal Rerkinz &

e oad

Tows +wo

U'ﬂ':..- D i

17

42,

!L Your Answer Here

1132009 (& 2002-09 Hal Perkire & LW CSE

L-4

= The naive explanation is that an object
contains

s Fields declared in its class and in all superclasses
= Redeclaration of a field hides superclass instance
s Methods declared in its class and in all
superclasses

= Redeclaration of a method overrides (replaces)
But overridden methods can still be accessed by super....

o5~~~ 2 When a method is called, the method "“inside”
that particular object is called

= But we don't want to really implement it this way
— we only want one copy of each method’s code

32009 (& 2002-09 Hal Perkins & LW CSE L-5

i Actual representation

= Each object contains

V= An entry for each field (variable)

/= A pointer to a runtime data structure describing
the class
= Key component: method dispatch table

= Basically a C struct

= Fields hidden by declarations in extended
classes are sti// allocated in the object and are
accessible from superclass methods

1132009 (& 2002-09 Hal Perkins & LW CSE LG

Method Dispatch Tables

s Often known as “vtables”

= One pointer per method — points to
beginning of method code

= Dispatch table offsets fixed at compile
time

= One instance of this per class, not per
object

1132009 (& 2002-09 Hal Perkire & LW CSE

L-7

Method Tables and
i Inheritance

= Simple implementation

= Method table for extended class has pointers to
methods declared in it

= Method table also contains a pointer to parent
class method table

s Method dispatch

= Look in current table and use it if method declared
locally

5 [D = Look in parent class table if not local
— Repeat

— L“D. Actually used in some dynamic systems (e.g.
SmallTalk, Ruby, etc.)

11/3f2009 @ 2002-09 Hal Perkirs & W CSE

L-2

O(1) Method Dispatch

One = Idea: First part of method table for extended
class has pointers for same methods in same
order as parent class

£ = BUT pointers actually refer to overriding methods
If these exist

= .. Method dispatch is indirect using fixed offsets
OFf known at compile time — O(1)
= In C: *(object->vtbl[offset])(parameters)

~—4’, Pointers to additional methods in extended

I

— class are included in the table following
inherited/overridden ones

1132009 (& 2002-09 Hal Perkins & LW CSE L-9

T

Method Dispatch Footnotes

= Still want pointer to parent class
method table for other purposes
« Casts and instanceof

‘= Multiple inheritance requires more

complex mechanisms
= Also true for multiple interfaces

1132009 (& 2002-09 Hal Perkire & LW CSE

L-10

10

175*-!2’

i Perverse Example Revisited

class One public static woid main(Sring[] args) 4
int tag: /" Two two = ey Twod),
iﬂ@ Cre one = T
yoit setTagl) {tag=1;}
intoetTagl) {return tag + e setTag),
wioid setTtlingil) Tthisfit)= Systern.out prind nione getTagl),
it ot ir |
I chesetI 17,
— class Two exiends One { b st Tag (),
i Systern.out print nibwo.getl 800,
wiol setTag(Systern.out prind nitwo.oetThat(1
tag=2{H=12 b0 FEmEtTE);
Systern.out print nibwo.getl 00,

imt oetThat(l 4 retur 1 Systern.out prind nifbwo.getThat{);
wioicl resetlt() £ super Setltig2y 3

2002-09 He Perkips-%

11

!L Implementation

1132009 (& 2002-09 Hal Perkire & LW CSE L-12

12

Now What?

= Need to explore
= Object layout in memory

s Compiling field references
= Implicit and explicit use of "this”

= Representation of vtables
~un Object creation — new

~ = Code for dynamic dispatch
= Including implementing “super.f”

- s Runtime type information — instanceof and casts

1132009 (& 2002-09 Hal Perkire & LW CSE L-13

13

Object Layout

= Typically, allocate fields sequentially

= Follow processor/OS alignment
conventions when appropriate /
available

= Use first word of object for pointer to
method table/class information

= Objects are allocated on the heap
= No actual bits in the generated code

1132009 (& 2002-09 Hal Perkire & LW CSE L-14

14

Local Variable Field Access

s Source |
int n = obj.fld;

- X86

= Assuming that obj is a local variable in the
current method

— mov eax,[ebp+offset,;] : load obj ptr
mov eax,[eax+offsety,] : load fld
~mov [ebp+offset.],eax : store n

1132009 (& 2002-09 Hal Perkins & LW CSE L-13

15

f:,\© @@ pid .-;. i
i Local Fields 3

= A method can refer to fields in the receiving
object either explicitly as “this.f” or implicitly
E:IS "ﬂ.fH
= Both compile to the same code — an implicit “this.”
is assumed if not present explicitly

= Mechanism: a reference to the current object
is an implicit parameter to every method
= Can be in a register or on the stack

1132009 (& 2002-09 Hal Perkins & LW CSE L-16

16

Thly, -

Source Level View

= When you write = You really get
N
void setlt(int it) { void setIt(ObjType this,
+n?:57_ s Efr?-ﬂtl Int it) |
this.it = it; , =k =ik
} nnn
setlt{obj,42);
obj.setlt(42); T 5
ot
11/3f2009 © 2002-09 Hal Perkire & Uw CSE L-17

17

i x86 Conventions (C++)

= ecx is traditionally used as “this”
= Add to method call

— Mmov ecx,receivingObject : ptr to object

s Do this after arguments are evaluated and
pushed, right before dynamic dispatch code that
actually calls the method

= Need to save ecx in a temporary or on the stack in
methods that call other non-static methods
= One possibility: add to prologue
= = Following examples aren 't careful about this

1132009 (& 2002-09 Hal Perkire & LW CSE L-13

18

i x86 Local Field Access

= Source
int n = fld; or intn = this.fld;

= X386
mov eax,[ecx+offset;] : load fld
mov [ebp+offset.],eax : store n

1132009 (& 2002-09 Hal Perkire & LW CSE L-19

19

x86 Method Tables (vtbls)

= We'll generate these in the assembly language
source program

= Need to pick a naming convention for method labels;
suggestion:

= For methods, classname$methodname
= Would need something more sophisticated for overloading
= For the vtables themselves, classname$$

= First method table entry points to superclass table

= Also useful: second entry points to default (0-
argument) constructor (if you have constructors)
= Makes implementation of super() particularly simple

1132009 (& 2002-09 Hal Perkins & LW CSE L-20

20

Method Tables For Perverse

i Example

— Class One |

void setTag()l { .. F
Nt getTag(l 1.}
void setlt(int it) ...}
int getlt() {..F

e &

— class Two extends COne {
void setTag() { ..

int getThat(i{ ... }

void resetIti) 4 ... F

L 2

11/3f2009

data

— One%$$: dd
dd
dd
dd
dd

— Twos$$: dd
dd
dd
dd
dd

dd

dd
dd

@ 2002-09 Hal Perkins & LW CSE

- : no superclass

One$0ne

OneysetTag
OnesgetTag

Onegsetlt

dd Opeggetit

Oness
Two$Two
Twogse tTag
One$getTag
Onejsett
One$getIt
TwosgetThat
TwoSresetIt

—

; parent

L-21

21

Method Table Footnotes

= Key point: First four non-constructor
method entries in Two’s method table
are pointers to methods declared in
One in exactly the same order

. Compiler knows correct offset for a
particular method regardiess of whether
that method is overridden

1132009 (& 2002-09 Hal Perkire & LW CSE L-22

22

i Object Creation — new

= Steps needed

o = Call storage manager (malloc or similar) to
hN
J

get the raw bits

bytes of the object

object, this, in ecx)

= Result of new is pointer to the constructed

object

1132009 (& 2002-09 Hal Perkins & LW CSE

= Store pointer to method table in the first 4

= Call a constructor (with pointer to the new

L-23

23

Object Creation

got by’
v |

= Source
Cre ore = rew Onel..,),

= XB6
pueh rByvtesheeded ;
call mallocEquiv !
add esp 4 :
lea ey, Cnetd 3
oy [eax]Edx ,
push ecx DU
[fpush constructor arguments > A
al COre$Cne 3
[<pop constructor argumerts > i
shop eax :
moy [ebp+offset,] eax :

1132009

(& 2002-09 Hal Perkire & LW CSE

cbij size + 4

, addr of bits retuned in eax

. pop NByteshesded

- get method table address

. store vtab pir at beginning of cbject

' set up “this” for constnuctor

| save ecx [constructor might clobber i)
arguments (if needed)

- call corstructor (no viab lookup needed)
(i needed)

' recover pir fo object

. store object reference in variable one

L-24

24

Constructor

= Only special issue here is generating
call to superclass constructor

= Same issues as super.method(...) calls —
we'll defer for now

1132009 (& 2002-09 Hal Perkire & LW CSE L-23

25

Method Calls

= Steps needed

«= Push arguments as usual

«~» Put pointer to object in ecx (new this)

~ s Get pointer to method table from first 4 bytes of
object

v = Jump indirectly through method table

/ = Restore ecx to point to current object (if needed)

= Useful hack: push it in the function prologue so it is
always in the stack frame at a known location

1132009 (& 2002-09 Hal Perkire & LW CSE L-26

26

o
Method Call =
"‘_J
= Source
ob meth(C)
m X86

Cr:push arguments from right to left> : (as needed)
C »mov ecx [ebptoffset,] ; get pointer to object

/mov eax,[ecx] . get pointer to method table
call dword ptr [eax+offset, .| ; call indirect via method tbl
(<pop arguments> : (if needed)

(MoV ecx,[ebp+offset, ...] ; (if needed)

1132009 (& 2002-09 Hal Perkire & LW CSE L-27

27

eck L L
Handling super 5 i pion B
s Almost the same as a regular method call 0
with one extra level of indirection
= Source)
(g meth(..)
s X86
<push arguments from right to left> (if needed) closs 8 extomds ‘EH’
mov ecx [ebp+offsety] | getpointer to object +ir. 5C)
—maoy eax,[ecx] 1 get method thl pointer e C
— maoy eax,[eax] © get parent's method thl pointer P £ \
~cal dword ptr [eaxtoffset .] ; indirect call
<pop arguments®> T f needed) j
11312009 @ 2002-09 Hal Perkins & LW 5E L:28 E.-I“I'--r]' 'C"*"L gf
p
\/

28

Runtime Type Checking

= Use the method table for the class as a
“runtime representation” of the class

= The test for "o instanceof C" is
s [s 0's method table pointer == &C$$7
= If so, result is "true”

= Recursively, get the superclass's method table
pointer from the method table and check that

= Stop when you reach Object (or a null pointer,
depending on how you represent things)

= If no match when you reach the top of the chain, result
is "false”

[': = Same test as part of check for legal downcast

1132009 (& 2002-09 Hal Perkire & LW CSE L-29

29

i Coming Attractions

= Code generation: register allocation,
iInstruction selection & scheduling

= Industrial-strength versions plus a simpler

"get it to work” scheme for our project
s Code optimization

1132009 (& 2002-09 Hal Perkire & LW CSE

L-30

30

