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Agenda

 Parser Semantic Actions

 Intermediate Representations

 Abstract Syntax Trees (ASTs)

 Linear Representations

 & more
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Compiler Structure (review)

Source Target

Scanner

Parser
Middle

(optimization)

Code Gen

characters

tokens

IR

IR (maybe different)

Assembly or binary code
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What’s a Parser to Do?

 Idea: at significant points in the parse 
perform a semantic action
 Typically when a production is reduced (LR) or at 

a convenient point in the parse (LL)

 Typical semantic actions

 Build (and return) a representation of the parsed 
chunk of the input (compiler) 

 Perform some sort of computation and return 
result (interpreter)



Intermediate Representations

 In most compilers, the parser builds an 
intermediate representation of the 
program

 Rest of the compiler transforms the IR to 
“improve” (optimize) it and eventually 
translates it to final code
 Often will transform initial IR to one or more 

different IRs along the way

 Some general examples now; specific 
examples as we cover later topics
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IR Design

 Decisions affect speed and efficiency of the rest of 
the compiler

 Desirable properties
 Easy to generate

 Easy to manipulate

 Expressive

 Appropriate level of abstraction

 Different tradeoffs depending on compiler goals

 Different tradeoffs in different parts of the same 
compiler



IR Design Taxonomy

 Structure

 Graphical (trees, DAGs, etc.)

 Linear (code for some abstract machine)

 Hybrids are common (e.g., control-flow 
graphs)

 Abstraction Level

 High-level, near to source language

 Low-level, closer to machine
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Levels of Abstraction

 Key design decision: how much detail to 
expose

 Affects possibility and profitability of 
various optimizations

 Structural IRs are typically fairly high-level

 Linear IRs are typically low-level

 But these generalizations don’t necessarily 
hold
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Examples: Array Reference

A[i,j]

or

t1  A[i,j]

loadI   1   => r1

sub  rj,r1  => r2

loadI  10  => r3

mult r2,r3 => r4

sub  ri,r1  => r5

add  r4,r5 => r6

loadI @A  => r7

add  r7,r6 => r8

load r8     => r9

subscript

A i j
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Structural IRs

 Typically reflect source (or other higher-
level) language structure

 Tend to be large

 Examples: syntax trees, DAGs

 Generally used in early phases of 
compilers
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Concrete Syntax Trees

 The full grammar is needed to guide the 
parser, but contains many extraneous details

 Chain productions

 Rules that control precedence and associativity

 Typically the full syntax tree does not need to 
be used explicitly
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Syntax Tree Example

 Concrete syntax for x=2*(n+m);

expr ::= expr + term | expr – term | term

term ::= term * factor | term / factor | factor

factor ::= int | id |  ( expr )



Abstract Syntax Trees

 Want only essential structural information
 Omit extraneous junk

 Can be represented explicitly as a tree or 
in a linear form
 Example: LISP/Scheme S-expressions are 

essentially ASTs

 Common output from parser; used for 
static semantics (type checking, etc.) and 
high-level optimizations
 Usually lowered for later compiler phases
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AST Example

 AST for x=2*(n+m);



Directed Acyclic Graphs

 DAGs are often used to identify 
common subexpressions

 Not necessarily a primary representation, 
compiler might build dag then translate 
back after some code improvement

 Leaves = operands

 Interior nodes = operators
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Expression DAG example

 DAG for  a + a * (b – c) + (b – c) * d
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Linear IRs

 Pseudo-code for some abstract machine

 Level of abstraction varies

 Simple, compact data structures

 Examples: three-address code, stack 
machine code



Abstraction Levels in Linear IR

 Linear IRs can also be close to the 
source language, very low-level, or 
somewhere in between.

 Example: Linear IRs for C array 
reference a[i][j+2] (from Muchnick, sec. 4.2)

 High-level:  t1  a[i,j+1]
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IRs for a[i,j+2], cont.

 Medium-level

t1  j + 2

t2  i * 20

t3  t1 + t2

t4  4 * t3

t5  addr a

t6  t5 + t4

t7  *t6

 Low-level

r1  [fp-4]

r2  r1 + 2

r3  [fp-8]

r4  r3 * 20

r5  r4 + r2

r6  4 * r5

r7  fp – 216

f1  [r7+r6]
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Abstraction Level Tradeoffs

 High-level: good for source 
optimizations, semantic checking

 Low-level: need for good code 
generation and resource utilization in 
back end; many optimizing compilers 
work at this level for middle/back ends

 Medium-level: fine for optimization and 
most other middle/back-end purposes
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Three-Address code

 Usual form: x  y (op) z

 One operator

 Maximum of three names

 Example: x=2*(n+m); becomes

t1  n + m

t2  2 * t1

x  t2
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Three Address Code

 Advantages
 Resembles code for actual machines

 Explicitly names intermediate results

 Compact

 Often easy to rearrange

 Various representations
 Quadruples, triples, SSA

 We will see much more of this…
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Stack Machine Code

 Originally used for stack-based computers 
(famous example: B5000)

 Now used for Java (.class files), C# (MSIL)

 Advantages

 Very compact; mostly 0-address opcodes

 Easy to generate

 Simple to translate to machine code or interpret 
directly

 And a good starting point for generating optimized code
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Stack Code Example

 Hypothetical code for x=2*(n+m);

pushaddr    x

pushconst   2

pushval      n

pushval      m

add

mult

store
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Hybrid IRs

 Combination of structural and linear

 Level of abstraction varies

 Most common example: control-flow 
graph

 Nodes: basic blocks

 Edge from B1 to B2 if execution can flow 
from B1 to B2



Basic Blocks

 Fundamental unit in IRs

 Definition: a basic block is a maximal 
sequence of instructions entered at the 
first instruction and exited at the last

 i.e., if the first instruction is executed, all of 
them will be (modulo exceptions)
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Identifying Basic Blocks

 Easy to do with a scan of the linear 
instruction stream

 A basic blocks begins at each 
instruction that is:

 The beginning of a routine

 The target of a branch

 Immediately following a branch or return
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What IR to Use?

 Common choice: all(!)

 AST or other structural representation built by 
parser and used in early stages of the compiler

 Closer to source code

 Good for semantic analysis

 Facilitates some higher-level optimizations

 Lower to linear IR for later stages of compiler

 Closer to machine code

 Exposes machine-related optimizations 

 Use to build control-flow graph
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Coming Attractions

 Representing ASTs

 Working with ASTs

 Where do the algorithms go?

 Is it really object-oriented?  (Does it matter?)

 Visitor pattern

 Then: semantic analysis, type checking, 
and symbol tables


