* CSE P 501 — Compilers

LL and Recursive-Descent Parsing
Hal Perkins
Autumn 2009

10202009 @ 2002-00 Hal Perkire & Uw C5E

F-1

i Agenda

= Top-Down Parsing
= Predictive Parsers
= LL(k) Grammars

= Recursive Descent

= Grammar Hacking
= Left recursion removal
= Factoring

1072042009 (& 2002-09 Hal Perkire & LW CSE

F-2

Basic Parsing Strategies (1)

= Bottom-up

= Build up tree from leaves

= Shift next input or reduce a handle

= Accept when all input read and reduced to start
symbol of the grammar

= LR(k) and subsets (SLR(k), LALR(k), ...)

remaining input |

1072042009 (& 2002-09 Hal Perkins & LW CSE F-3

i Basic Parsing Strategies (2)

= [op-Down
= Begin at root with start symbol of grammar
s Repeatedly pick a non-terminal and expand
s Success when expanded tree matches input

1072042009 (& 2002-09 Hal Perkire & LW CSE

F-4

i Top-Down Parsing

= Situation: have completed part of a derivation

S=>% uﬂ:}* WXY
= Basic Step: Pick some production
An=py by By
that will properly expand A
to match the input
= Want this to be

deterministic \

1072042009 (& 2002-09 Hal Perkire & LW CSE

F-5

Predictive Parsing

If we are located at some non-terminal A,
and there are two or more possible
productions
[A gy
A=
we want to make the correct choice by
looking at just the next input symbol

If we can do this, we can build a predictive
parser that can perform a top-down parse
without backtracking

1072042009 (& 2002-09 Hal Perkire & LW CSE

F-6

Example

= Programming language grammars are often
suitable for predictive parsing

= Typical example
stmt::= id=exp; | return exp ;
| if (exp) stmt | while (exp) stmt

If the first part of the unparsed input begins
with the tokens

IF LPAREN ID(x) .
we should expand sttt to an if-statement

1072042009 (& 2002-09 Hal Perkire & LW CSE

F-7

n.l'_"h" 'ﬂ} #

& Hstring
i LL(k) Property

= A grammar has the LL(1) property if,
for all non-terminals A, if productions

{: A ::= o and A ::= [} both appear in the

grammar, then it is the case that
FIRST (o) N FIRST(B) = @

= If a grammar has the LL(1) property,
we can build a predictive parser for it
that uses 1-symbol lookahead

1072042009 & 2002-09 Hal Perkire & LW CSE

F-8

LL(k) Parsers

= An LL(k) parser

= Scans the input Left to right
= Constructs aLeFt_mDst derivation
= Looking ahead at most k symbols
= 1-symbol lookahead is enough for

many practical programming language
grammars

= LL(k) for k>1 is very rare in practice

1072042009 (& 2002-09 Hal Perkire & LW CSE

F-9

i Table-Driven LL(k) Parsers

= As with LR(k), a table-driven parser can be
constructed from the grammar

= Example
I. S::=(5)S
2. Su=l 8518
3. Si=E
= [able
£ 2 1
s |1]3] 2|3

1072042009 (& 2002-09 Hal Perkire & LW CSE F-10

10

i LL vs LR (1)

= Table-driven parsers for both LL and LR
can be automatically generated by tools

[\iﬁ = LL(1) has to make a decision based on

b~ a single non-terminal and the next input
symbol

= LR(1) can base the decision on the
entire left context (i.e., contents of the
/ﬁﬁ stack) as well as the next input symbol

1072042009 (& 2002-09 Hal Perkire & LW CSE F-11

11

i LL vs LR (2)

= . LR(1) is more powerful than LL(1)

= Includes a larger set of grammars

= .. (editorial opinion) If you're going to
use a tool-generated parser, might as
well use LR

= But there are some very good LL parser
tools out there (ANTLR, JavaCC, ...) that
might win for non-LLvsLR reasons

1072042009 (& 2002-09 Hal Perkire & LW CSE F-12

12

@.-:-_- peey S S0 RS
Recursive-Descent Parsers

= An advantage of top-down parsing is
that it is easy to implement by hand

= Key idea: write a function (procedure,
method) corresponding to each non-
terminal in the grammar

= Each of these functions is responsible for
matching its non-terminal with the next
part of the input

1072042009 (& 2002-09 Hal Perkire & LW CSE F-13

13

Example: Statements

= Grammar = Method for this grammar rule
stmtii= id= exp; /] parse stmt ::= id=exp; | .-—
| return exp ; void stmt() {

| if (exp) stmt

| while (exp) stmt switch(nextToken) {

RETURN: returnStmt(); break;

IF: ifStmt(); break;
WHILE: whileStmt(); break;
ID:; assignStmt(); break;
_ SISt
s
h
10/20/2m9 @ 2002-09 Hal Perking & LW CSE

F-14

14

Example (cont)

¥
/} parse while (exp) stmt /f parse return exp |
void whi eStmtI = void returnstmt!) £
/1 Zkip wﬁle (- /i skip fretum®
w w4 _ngetr\bxtToken[j :
e
/f parse expression
} parse condition _exp();
expll;
—B-Q— \ llllllllllll Skip U.I:.l.l
i skip ") getiNextToken();
o aetext Token(); : R
/f parse stmt
stmt();
T
10/20/ 2009 (© 2002-09 Hal Perkirs & UW CSE

F-13

15

+

mextT vben

Invariant for Functions

(

= The parser functions need to agree on where
they are in the input

= Useful invariant: When a parser function is
called, the current token (next unprocessed
piece of the input) is the token that begins
the expanded non-terminal being parsed

s Corollary: when a parser function is done, it must

have completely consumed input correspond to
that non-terminal

1072042009 & 2002-09 Hal Perkire & LW CSE F-16

16

Possible Problems

= Two common problems for recursive-
descent (and LL(1)) parsers

= Left recursion (e.g., E:i= E+ T |...)

= Common prefixes on the right hand side of
productions

1072042009 (& 2002-09 Hal Perkire & LW CSE F-17

17

i Left Recursion Problem

« Grammar rule =« Code
[expr::= expr + term /] parse expr i= ...
| term void expr() {
[expr();
if (current token is
PLUS) {
getNextToken();

g term();

= And the bug is???? ’
y

10202009 @ 2002-09 Hal Perkirs & LWy CSE F-18

18

i Left Recursion Problem

= If we code up a left-recursive rule as-is,
we get an infinite recursion

= Non-solution: replace with a right-
recursive rule
[expr .= term+ expr | term
= Why isn't this the right thing to do?

1072042009 (& 2002-09 Hal Perkire & LW CSE F-19

19

Left Recursion Solution

Rewrite using right recursion and a new non-

terminal i
Original: expr:.:= expr+ term | term

New

expr = term expritall

e@aﬂ:: + term eﬂaf}’ | &
Properties
= No infinite recursion if coded up directly
= Maintains left associatively (required)

1072042009 (& 2002-09 Hal Perkire & LW CSE

F-20

20

i Another Way to Look at This

= Observe that
[expr::= expr+ term| term
generates the sequence
[term+ term+ term+ ... + term

= We can sugar the original rule to show
this
(expr::= term{ + _term }*

= This |leads directly to parser code

1072042009 (& 2002-09 Hal Perkire & LW CSE F-21

21

Code for Expressions (1)

[/ parse
[/] expr::=
void expr() {
»term();
[while (next symbol is PLUS) {

getNextToken();
term()

term { + term }*

¥

L 7

107202009

rﬁ

/[parse
term ::= factor { * factor }*
void term() {
« factor();
while (next symbol is TIMES) {

AetNextToken();
Aactor()

¥

{& 2002-09 Hal Perkins & LW CSE

g

F-22

22

$ Code for Expressions (2)

!/ parse J{
/| factor i=int|id | (expr) caseID:
void factar()y sprocess identifier;
switch(nextToken) { getNextToken();
break;
scase INT: case LPAREN:
4/process int constant; getNextToken(); (
getNextToken(); expr();
break; getlNextToken();)
L
i ¥
10/ 202009 @ 2002-02 Hal Perking & 1w CSE F-23

23

What About Indirect Left
Recursion?

= A grammar might have a derivation that

leads to a left recursion
A=>py =>*p,=> Ay

—"

= There are syst;watic @ays to factor
such grammars

= See the book

1020/ 2009 @ 2002-09 Hal Perkire & LW CSE F-24

24

Left Factoring

= If two rules for a non-terminal have
right hand sides that begin with the
same symbol, we can't predict which
one to use

= Solution: Factor the common prefix into

a separate production

1072042009 (& 2002-09 Hal Perkins & LW CSE

F-23

25

$ Left Factoring Example

= Original grammar
[ffStmr:: if (expr) stmt
| if (expr) stmt efcse stmt

= Factored grammar
[ifStmt::= if (expr) stmt ifTail
iflail ::= else stmt | €

1072042009 (& 2002-09 Hal Perkire & LW CSE

F-26

26

$ Parsing if Statements

= [But it's easiest to just ﬁ Pal"ﬁ |t [e st
code up the “else ~if (expr) stmt [else stmt
matches closest if” void ifStmt() -

: sgetllextToken();
_rule directly ~getlextToken();

AexXpr();

«gethlextToken();

vstmt();

[-'if (next symbol is ELSE) {

getNextToken();
stmt();
¥
h

10/20/2009 @ 2002-09 Hal Perkire & Lw CSE F-27

27

i, g,

i Another Lookahead Problem

= In languages like FORTRAN, parentheses are
used for array subscripts

= A FORTRAN grammar includes something like
factor ::= 1d (subscripts) | id (arguments) | ...

= When the parser sees "/id (", how can it
decide whether this begins an array element
reference or a function call?

1072042009 (& 2002-09 Hal Perkire & LW CSE F-28

28

doelk =13 = dy = /7HZ
ds 11563

i Two Ways to Handle id(?)

= Use the type of /d to decide

= Requires declare-before-use restriction if
we want to parse in 1 pass

= Use a covering grammar

e (

factor ::= id (commaSeparatedList) | ...

and fix later when more information is
available

1072042009 (& 2002-09 Hal Perkire & LW CSE

F-29

29

Top-Down Parsing Concluded

= Works with a smaller set of grammars
than bottom-up, but can be done for

most sensible programming language
constructs

= If you need to write a quick-n-dirty

parser, recursive descent is often the
method of choice

1072042009 (& 2002-09 Hal Perkire & LW CSE F-20

30

Parsing Concluded

= That's it!
= On to the rest of the compiler

s Coming attractions
= Intermediate representations (ASTs etc.)

= Semantic analysis (including type checking)
= Symbol tables
= & more...

1072042009 (& 2002-09 Hal Perkins & LW CSE F-21

31

