* CSE P 501 — Compilers

LR Parser Construction
Hal Perkins
Autumn 2009

10/13f2009 @ 2002-00 Hal Perkire & Uw C5E

E1

i Agenda

= LR(0) state construction
= FIRST, FOLLOW, and nullable
= Variations: SLR, LR(1), LALR

10713/ 2009 (& 2002-09 Hal Perkire & LW CSE

E-2

LR State Machine

= Idea: Build a DFA that recognizes
handles

= Language generated by a CFG is generally
not regular, but

= Language of handles for a CFG is regular
= So a DFA can be used to recognize handles

= Parser reduces when DFA accepts

10713/ 2009 (& 2002-09 Hal Perkins & LW CSE E-3

i Prefixes, Handles, &c (review)

= If Sis the start symbol of a grammar G,
s If S=>% ¢ then u is a sentential form of G

s v is a viable prefix of Gif there is some derivation
S =>*_ ovAw =>*_ opw
and v is a prefix of op.

s The occurrence of B in upw is a hand/e of apw

= An /femis a marked production (a . at some
position in the right hand side)

s [A:ii=. XVY] [A:i=X.Y] [Au=XVY.]

10713/ 2009 (& 2002-09 Hal Perkire & LW CSE E-4

Building the LR(0) States

= Example grammar

= §re 58
S:=(1L)
Sii=¥%
e =)
Li=L:; 5§

=« We add a production S" with the original start
symbol followed by end of file ($)

= Question: What language does this grammar
generate?

10713/ 2009 (& 2002-09 Hal Perkire & LW CSE

E-3

WO =o
M~ G Yy
L

Cw

= Uy g

Start of LR Parse

tn

= Initially
= Stack is empty
= Input is the right hand side of 5}‘; 1.8, S
=« Initial configuration is [S7::= . S $]
= But, since position is jugt before S, we are

also just before anything that can be

derived from S
o

10f13/=2009 & 200209 Hal Perkire & W CSE

E-&

i Initial state

- = Bl

5:' -(L),
Gz y B - completion

= A state is just a set of items

s Start: an initial set of items

s Completion (or closure): additional productions
whose left hand side appears to the right of the
dot in some item already in the state

10f13/=2009 & 200209 Hal Perkire & W CSE

L
in

B: &=
L A
2, Sh=

3: Eii= 8
& L= ko5

E-7

0: 5=b
Y. =l L)
Shift Actions (1) Lams

g B8 x
Su=.(L)y—=—Sii=X.
S5:ii=.X

= 1o shift past the x, add a new state with the
appropriate item(s)
= In this case, a single item; the closure adds nothing

« This state will lead to a reduction since no further shift is
possible

10f13/=2009 & 200209 Hal Perkire & W CSE

E-8

0: 5=b

Y. =l L)

. _ 2, Sh=

i Shift Actions (2) 4
ge=(, L)
Shi=.88| ¢ |[Le=.1,8
Stim.{d)y—jly=. 8
Su=.X S L)
Su=TX

= If we shift past the (, we are at the beginning of

= the closure adds all productions that start with £,
which requires adding all productions starting with S

10f13/=2009 & 200209 Hal Perkire & W CSE E-Q

PUN RO
A o
omwony
W R

i Goto Actions

5%
(L) 5 G
. X

—

g
5::
5

= Once we reduce S, we'll pop the rhs
from the stack exposing the first state.
Add a goto transition on S for this.

10f13/=2009 & 200209 Hal Perkire & W CSE E-10

10

Basic Operations

s Closure (S)

= Adds all items implied by items already in S
s Goto ([, X)
= [is a set of items

= Xis a grammar symbol (terminal or non-
terminal)

= Gofo moves the dot past the symbol X in
all appropriate items in set 7

10713/ 2009 (& 2002-09 Hal Perkire & LW CSE E-11

11

i Closure Algorithm

s Closure(S) =
repeat J
for any item [A :i= o . XB]in S
for all productions X ::= v
add [X::= {’“.,.f] to S
until S does not change
return S

10713/ 2009 (& 2002-09 Hal Perkire & LW CSE E-12

12

Goto Algorithm

s Goto ([X) =
set new to the empty set
foreachitem[A:i=a. X Blin]
add [A:i=a X. ﬁto new
return Closure (new)

e

= This may create a new state, or may return an

existing one

10713/ 2009 (& 2002-09 Hal Perkire & LW CSE

E-13

13

LR(0) Construction

= First, augment the grammar with an
extra start production $7::= S$

= Let 7 be the set of states
= Let £ be the set of edges
= Initialize 7 to Closure ([S"::= . 53])
= Initialize £ to empty

10713/ 2009 (& 2002-09 Hal Perkire & LW CSE E-14

14

LR(0) Construction Algorithm

repeat
for each state 7 in 7
foreachitem [A:i=a. X Blin [
Let new be Goto(I, X)
Add new to T if not present
Add 72~ pnew to £ if not present
until £ and 7 do not change in this iteration

= Footnote: For symbol $, we don't compute goto (I, $); instead,
we make this an acceptaction,

10713/ 2009 (& 2002-09 Hal Perkire & LW CSE E-15

15

i LR(0) Reduce Actions

= Algorithm:
Initialize R to empty
foreachstate 7 in 7
foreachitem [A::=a .]In [
add ([, A::=a)to R

10713/ 2009 (& 2002-09 Hal Perkire & LW CSE E-16

16

Building the Parse Tables (1)

= For each edge 7 — J

= if X is a terminal, put s;j in column X, row 7

of the action table (shift to state)

= If X is a non-terminal, put g/ in column X,

row 7 of the goto table

10713/ 2009 (& 2002-09 Hal Perkire & LW CSE

E-17

17

i Building the Parse Tables (2)

= For each state /7 containing an item
[S7 ::= 5. $], put acceptin column $ of
row /

= Finally, for any state containing
[A ::= v .] put action rn7in every column
of row 7 in the table, where rnis the
production humber

10713/ 2009 (& 2002-09 Hal Perkire & LW CSE E-15

18

i Exa
©

X :
__95’:-*'.5‘ ___—%l :.

g iz ,(L)

S--r';:ri L

s'f:::-' S ‘ :

10f13/=2009

& 200209 Hal Perkire & W CSE

E-19

19

S N L T
il el ¥ WL L
"

o

L Su=
: X
IL Example: Tables for = ti=s
¢ = 3 t 1 ¢ L
I w3 s R
2 2 ri rl rt o 8 5.
3 € T3
4
5 56 e '
c ! ri i £
T #Ed o3 rh r r3 j"l
s 4
,.
‘% H M ry rH
10/ 1342009 @ 2002-02 Hal Perkirs & LW CSE

E-20

20

Where Do We Stand?

= We have built the LR(0) state machine
and parser tables
= No lookahead yet

=« Different variations of LR parsers add
lookahead information, but basic idea of
states, closures, and edges remains the
same

10713/ 2009 (& 2002-09 Hal Perkire & LW CSE E-21

21

i A Grammar that is not LR(0)

= Build the state machine and parse

tables for a simple expression grammar

S F S
E:ii=T+ E
Eii=T
Tinsx

10713/ 2009 (& 200E-09 Hal Perking & LW CSE

E2=

22

~mm G
TELEHRE
9 &
+
I“-r,l

sl ol =

i LR(0) Parser for
@ @ % + : E T

Su=.E$ E:S::=E.$ ho| €8 & &
En=«THE 2 ace
Eu=.T @ 3 | r2 s4rz 12
I =X s , =
i 4 | 55 ¥ 63
5 | x _______#,.r s |3 3 13
+ T 6 r1 (11l
T = 4) |
Ei=T+.E = State 3 is has two possible
(6) Ei=.T+E actions on +
Eii=T+E e dEii=:T .
B : Eiiz.x = shift 4, or reduce 2
= .. Grammar is not LR(0)
10/ 1372009 & 2002-09 Hal Perkire & Ly CSE E-23

23

i SLR Parsers

s Idea: Use information about what can follow

a non-terminal to decide if we should perform
a reduction

= FEasiest form is SLR — Simple LR

= S0 we need to be able to compute
FOLLOW(A) — the set of symbols that can
N1 follow A in any possible derivation

= But to do this, we need to compute FIRST(~) for
strings 7 that can follow A

10713/ 2009 (& 2002-09 Hal Perkins & LW CSE E-24

24

Calculating FIRST(y)

= Sounds easy... If y = X' Y7, then
FIRST(y) is FIRST(X'), right?

=« But what if we have the rule X ::= ¢?

= In that case, FIRST(v) includes anything
that can follow an X'—i.e. FOLLOW(X)

10713/ 2009 (& 2002-09 Hal Perkire & LW CSE E-25

25

FIRST, FOLLOW, and nullable

= nhullable(X') is true if X can derive the empty
string

= Given a string v of terminals and non-
terminals, FIRST(v) is the set of terminals
that can begin strings derived from .

s FOLLOW(X) is the set of terminals that can
immediately follow X in some derivation

= All three of these are computed together

10713/ 2009 (& 2002-09 Hal Perkire & LW CSE E-26

26

Computing FIRST, FOLLOW,
and nullable (1)

= Initialization

set FIRST and FOLLOW to be empty sets
set nullable to false for all non-terminals
set FIRST[a] to a for all terminal symbols a

104132000 @ 2002-09 Hal Perkire & W CSE E-27

27

repeat
for each production X:= ¥, ¥, ... X
if ¥, ... ¥ areall nullable (or if k= 0)
set nullable[X'] = true
for each 7 from 1 to k and each 7 from 7/ +1 to &
if ¥, ... ¥y areall nullable (orif /=1)

—3dd FIRST[V'] to FIRSTX]

if ¥, ... ¥ are all nullable (orif /= k)
|+
~add FOLLOW[X] to FOLLOW[¥]

if ¥, , are all nullable (or if i+1=j)
add ﬁRST[Y] to FOLLOW[¥]
Until FIRST, FOLLOW, and nullable do not change

104132000 @ 2002-09 Hal Perkire & W CSE E-28

28

$ Example

Grammar
Z iy
L= N ¥
YissE
=
A= Y
X:ii=a3a
10/13,/2009

nullable
e
X Al

+ree.
y Eedr

Z Fole

FIRST

e
EC

(& 2002-09 Hal Perkire & LW CSE

FOLLOW

Yicdah

§ Lo~

EJ}&},E E L }

E-29

29

SLR Construction

= This is identical to LR(0) — states, etc., except
for the calculation of reduce actions

= Algorithm:
Initialize R to empty
for each state 7 in 7
foreachitem [A::= o .] in]
for each terminal a in FOLLOW(A)
add ([a, A::= o) to R —
= i.e., reduce o to 4 in state 7 only on lookahead a

10713/ 2009 (& 2002-09 Hal Perkins & LW CSE E-20

30

0. 5¢
l. Ep=T+E
2: F =
@ @ $ &+ § E T
Su=.E$ |-JSu=E.$ 1| s @2 q
E::=.T+E Z anc
'IE:='T T® 3 | (B s a2
=X mME!:i=T.+E =
Eo=T. : 55 3 3 a5 g3
A 3 fi ra
@ - * 7 =S rl ri
Ti=X 4 L
E:=T+.E
@ Ei:=.T+E
Earm T E, i E3=3 T
Eiisa X
10f13f2009 @ 2002-09 Hal Perkire & Ly CSE E-31

31

i On To LR(1)

= Many practical grammars are SLR
= LR(1) is more powerful yet

= Similar construction, but notion of an
item is more complex, incorporating
lookahead information

10713/ 2009 (& 2002-09 Hal Perkire & LW CSE

E-32

32

i LR(1) Items

= An LR(1) item [A::= o . B, a] is
= A grammar production (A :::-'E:;:ﬁ)
= A right hand side position (the dot)
= A lookahead symbol (a)

= Idea: This item indicates that « is the
top of the stack and the next input is
derivable from [3a.

s Full construction: see the book

10713/ 2009 (& 2002-09 Hal Perkire & LW CSE E-33

33

LR(1) Tradeoffs

= LR(1)
= Pro: extremely precise; largest set of
grammars

= Con: potentially very large parse tables
with many states

10713/ 2009 (& 2002-09 Hal Perkire & LW CSE E-34

34

:L LALR(1)

= Variation of LR(1), but merge any two
states that differ only in lookahead

= Example: these two would be merged

[A::=x.,a]
[[ﬁi::=><.fb]

10713/ 2009

(& 2002-09 Hal Perkire & LW CSE

E-35

35

:L LALR(1) vs LR(1)

= LALR(1) tables can have many fewer
states than LR(1)

= LALR(1) may have reduce conflicts

where LR(1) would not (but in practice

this doesn't happen often)

10713/ 2009 (& 2002-09 Hal Perkire & LW CSE

E-36

36

i Language Heirarchies
/ unambiguous grammars Zﬁ‘;ﬂgﬂﬁ:f:\

/ LK)\ LR(K)

MLL(1))| _LR 1N
7 LR(1)
/ SLR |\

/|

10713/ 2009 (& 2002-09 Hal Perkire & LW CSE E-37

37

i Coming Attractions

= LL(k) Parsing — Top-Down
s Recursive Descent Parsers

« What you can do if you need a parser in a

hurry

10713/ 2009 (& 2002-09 Hal Perkire & LW CSE

E-38

38

