

CSE P 501 – Compilers

LR Parser Construction Hal Perkins Autumn 2009

10/13/2009

© 2002-09 Hal Perkins & UW CSE

Agenda

- LR(0) state construction
- FIRST, FOLLOW, and nullable
- Variations: SLR, LR(1), LALR

10/13/2009

@ 2002-09 Hall Perkins & UW CSE

LR State Machine

- Idea: Build a DFA that recognizes handles
 - Language generated by a CFG is generally not regular, but
 - Language of handles for a CFG is regular
 - So a DFA can be used to recognize handles
 - Parser reduces when DFA accepts

10/13/2009

© 2002-09 Hall Perkins & UW CSE

Prefixes, Handles, &c (review)

- If S is the start symbol of a grammar G,
 - If $S = > * \alpha$ then α is a sentential form of G
 - γ is a *viable prefix* of G if there is some derivation $S = >*_{rm} \alpha Aw = >*_{rm} \alpha \beta w$ and γ is a prefix of $\alpha \beta$.
 - The occurrence of β in αβw is a *handle* of αβw
- An item is a marked production (a . at some position in the right hand side)
 - \bullet [A::= . XY] [A::= X.Y] [A::= XY.]

10/13/2009

@ 2002-09 Hal Perkins & UW CSE

Building the LR(0) States

Example grammar

```
S'::= S$
S::= ( L)
S::= ×
L::= S
L::= L, S
```

- We add a production S' with the original start symbol followed by end of file (\$)
- Question: What language does this grammar generate?

10/13/2009

@ 2002-09 Hall Perkins & UW CSE

Start of LR Parse

```
0. S'::= S$
1. S::= (L)
2. S::= X
3. L::= S
4. L::= L, S
```

- Initially
 - Stack is empty
 - Input is the right hand side of S'_i , i.e., S\$
 - Initial configuration is $[S'::= . \dot{S} \$]$
 - But, since position is just before S, we are also just before anything that can be derived from S

9

10/13/2009

© 2002-09 Hal Perkins & UW CSE

Initial state

$$S'::= . S$$
 start
$$S::= . (L),$$

$$S::= . X$$
 completion

- A state is just a set of items
 - Start: an initial set of items
 - Completion (or closure): additional productions whose left hand side appears to the right of the dot in some item already in the state

10/13/2009

© 2002-09 Hall Perkins & UW CSE

Shift Actions (1)

$$S'::= . S$$

$$S::= . (L)$$

$$S::= . X$$

- To shift past the x, add a new state with the appropriate item(s)
 - In this case, a single item; the closure adds nothing
 - This state will lead to a reduction since no further shift is possible

10/13/2009

© 2002-09 Hall Perkins & UW CSE

Shift Actions (2)

4.
$$L ::= L, S$$

$$S'::=.S$$$

$$S::=.(L)$$

$$S::=.X$$

$$S::=(.L)$$

$$L::=.\overline{L},S$$

$$L::=.S$$

$$S::=.(L)$$

$$S::=.X$$

- If we shift past the (, we are at the beginning of L
- the closure adds all productions that start with L,
 which requires adding all productions starting with S

10/13/2009

© 2002-09 Hal Perkins & UW CSE

Goto Actions

$$S'::= . S$$

$$S::= . (L)$$

$$S::= . X$$

Once we reduce S, we'll pop the rhs from the stack exposing the first state. Add a goto transition on S for this.

10/13/2009

© 2002-09 Hal Perkins & UW CSE

Basic Operations

- Closure (S)
 - Adds all items implied by items already in S
- Goto (I, X)
 - I is a set of items
 - X is a grammar symbol (terminal or nonterminal)
 - Goto moves the dot past the symbol X in all appropriate items in set I

10/13/2009

@ 2002-09 Hall Perkins & UW CSE

Closure Algorithm

```
repeat
for any item [A ::= \alpha . X \beta] in S
for all productions X ::= \gamma
add [X ::= . \gamma] to S
until S does not change
return S
```

10/13/2009

@ 2002-09 Hall Perkins & UW CSE

Goto Algorithm

• Goto (I, X) =set new to the empty set for each item $[A ::= \alpha . X \beta]$ in Iadd $[A ::= \alpha X . \beta]$ to newreturn Closure(new)

This may create a new state, or may return an existing one

10/13/2009

@ 2002-09 Hall Perkins & UW CSE

LR(0) Construction

- First, augment the grammar with an extra start production S'::= S\$
- Let T be the set of states
- Let E be the set of edges
- Initialize T to Closure ([S'::= . S\$])
- Initialize E to empty

10/13/2009

@ 2002-09 Hall Perkins & UW CSE

LR(0) Construction Algorithm

```
repeat
for each state I in T
for each item [A ::= \alpha . X \beta] in I
Let new be Goto(I, X)
Add new to T if not present
Add I \xrightarrow{\times} new to E if not present
until E and E do not change in this iteration
```

 Footnote: For symbol \$, we don't compute goto (I, \$); instead, we make this an accept action.

10/13/2009

@ 2002-09 Hall Perkins & UW CSE

LR(0) Reduce Actions

Algorithm:

```
Initialize R to empty for each state I in T for each item [A ::= \alpha .] in I add (I, A ::= \alpha) to R
```

10/13/2009

@ 2002-09 Hall Perkins & UW CSE

Building the Parse Tables (1)

- For each edge $I \xrightarrow{\times} J$
 - if X is a terminal, put sj in column X, row I of the action table (shift to state j)
 - If X is a non-terminal, put gj in column X, row I of the goto table

10/13/2009

@ 2002-09 Hall Perkins & UW CSE

Building the Parse Tables (2)

- For each state I containing an item [S'::= S.\$], put accept in column \$ of row I
- Finally, for any state containing [A::= γ.] put action rn in every column of row I in the table, where n is the production number

10/13/2009

@ 2002-09 Hal Perkins & UW CSE

Where Do We Stand?

- We have built the LR(0) state machine and parser tables
 - No lookahead yet
 - Different variations of LR parsers add lookahead information, but basic idea of states, closures, and edges remains the same

10/13/2009

@ 2002-09 Hall Perkins & UW CSE

A Grammar that is not LR(0)

 Build the state machine and parse tables for a simple expression grammar

$$S ::= E$$
\$

$$E ::= T + E$$

$$E ::= T$$

$$T ::= x$$

10/13/2009

@ 2002-09 Hall Perkins & UW CSE

LR(0) Parser for 2. E := T

0. S := E\$

1. E := T + E

	×	÷	\$	Е	T
1	s5			g2	G3
2			acc		
3	r2	s4,r2	r2		
4	s5	nie En		g6	G3
5	r3	r3	r3		
6	r1	r1	r1		

- State 3 is has two possible actions on +
 - shift 4, or reduce 2
- ∴ Grammar is not LR(0)

10/13/2009

@ 2002-09 Hall Perkins & UW CSE

SLR Parsers

- Idea: Use information about what can follow a non-terminal to decide if we should perform a reduction
- Easiest form is SLR Simple LR
- So we need to be able to compute FOLLOW(A) – the set of symbols that can follow A in any possible derivation

AT

 But to do this, we need to compute FIRST(γ) for strings γ that can follow A

10/13/2009

@ 2002-09 Hall Perkins & UW CSE

Calculating FIRST(γ)

• Sounds easy... If $\underline{\gamma} = \underline{X}\underline{Y}\underline{Z}$, then FIRST(γ) is FIRST(X), right?

- But what if we have the rule $X := \varepsilon$?
- In that case, FIRST(γ) includes anything that can follow an X – i.e. FOLLOW(X)

10/13/2009

@ 2002-09 Hall Perkins & UW CSE

FIRST, FOLLOW, and nullable

- nullable(X) is true if X can derive the empty string
- Given a string γ of terminals and nonterminals, FIRST(γ) is the set of terminals that can begin strings derived from γ .
- FOLLOW(X) is the set of terminals that can immediately follow X in some derivation
- All three of these are computed together

10/13/2009

@ 2002-09 Hall Perkins & UW CSE

Computing FIRST, FOLLOW, and nullable (1)

Initialization

set FIRST and FOLLOW to be empty sets set nullable to false for all non-terminals set FIRST[a] to a for all terminal symbols a

10/13/2009

@ 2002-09 Hall Perkins & UW CSE

Computing FIRST, FOLLOW, and nullable (2)

```
repeat
for each production X := Y_1 Y_2 ... Y_k

if Y_1 ... Y_k are all nullable (or if k = 0)
set nullable[X] = true
for each i from 1 to k and each j from i + 1 to k
if Y_1 ... Y_{i-1} are all nullable (or if i = 1)
add FIRST[Y_i] to FIRST[X]
if Y_{i+1} ... Y_k are all nullable (or if i = k)
add FOLLOW[X] to FOLLOW[Y_i]
if Y_{i+1} ... Y_{i-1} are all nullable (or if i + 1 = j)
add FIRST[Y_j] to FOLLOW[Y_i]
Until FIRST, FOLLOW, and nullable do not change
```

10/13/2009

@ 2002-09 Hall Perkins & UW CSE

Example

Grammar

$$Z ::= X Y Z$$

$$Y ::= \varepsilon$$

$$X ::= Y$$

$$X ::= a$$

10/13/2009

@ 2002-09 Hall Perkins & UW CSE

SLR Construction

- This is identical to LR(0) states, etc., except for the calculation of reduce actions
- Algorithm:

```
Initialize R to empty for each state I in T for each item [A ::= \alpha .] in I for each terminal a in FOLLOW(A) add (I, a, A ::= \alpha) to R
```

• i.e., reduce α to A in state I only on lookahead a

10/13/2009

© 2002-09 Hall Perkins & UW CSE

SLR Parser for

2. E ::= T 3. T ::= x

10/13/2009

© 2002-09 Hal Perkins & UW CSE

On To LR(1)

- Many practical grammars are SLR
- LR(1) is more powerful yet
- Similar construction, but notion of an item is more complex, incorporating lookahead information

10/13/2009

@ 2002-09 Hall Perkins & UW CSE

LR(1) Items

- An LR(1) item $[A ::= \alpha . \beta, a]$ is
 - A grammar production ($A := \alpha \beta$)
 - A right hand side position (the dot)
 - A lookahead symbol (a)
- Idea: This item indicates that α is the top of the stack and the next input is derivable from βa.
- Full construction: see the book

10/13/2009

@ 2002-09 Hall Perkins & UW CSE

LR(1) Tradeoffs

- LR(1)
 - Pro: extremely precise; largest set of grammars
 - Con: potentially very large parse tables with many states

10/13/2009

@ 2002-09 Hall Perkins & UW CSE

LALR(1)

- Variation of LR(1), but merge any two states that differ only in lookahead
 - Example: these two would be merged

$$[A ::= \times . , a]$$

 $[A ::= \times . , b]$

10/13/2009

@ 2002-09 Hall Perkins & UW CSE

LALR(1) vs LR(1)

- LALR(1) tables can have many fewer states than LR(1)
- LALR(1) may have reduce conflicts where LR(1) would not (but in practice this doesn't happen often)

10/13/2009

@ 2002-09 Hall Perkins & UW CSE

Language Heirarchies

Coming Attractions

- LL(k) Parsing Top-Down
- Recursive Descent Parsers
 - What you can do if you need a parser in a hurry

10/13/2009

@ 2002-09 Hall Perkins & UW CSE