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i Agenda

= LR(0) state construction
= FIRST, FOLLOW, and nullable
= Variations: SLR, LR(1), LALR
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LR State Machine

= Idea: Build a DFA that recognizes
handles

= Language generated by a CFG is generally
not regular, but

= Language of handles for a CFG is regular
= So a DFA can be used to recognize handles

= Parser reduces when DFA accepts
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i Prefixes, Handles, &c (review)

= If Sis the start symbol of a grammar G,
s If S=>% ¢ then u is a sentential form of G

s v is a viable prefix of Gif there is some derivation
S =>*_ ovAw =>*_ opw
and v is a prefix of op.

s The occurrence of B in upw is a hand/e of apw

= An /femis a marked production (a . at some
position in the right hand side)

s [A:ii=. XVY] [A:i=X.Y] [Au=XVY.]
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Building the LR(0) States

= Example grammar

= §re 58
S:=(1L)
Sii=¥%
e =)
Li=L:; 5§

=« We add a production S" with the original start
symbol followed by end of file ($)

= Question: What language does this grammar
generate?

10713/ 2009 (& 2002-09 Hal Perkire & LW CSE

E-3




WO =o
M~ G Yy
L

Cw

= Uy g

Start of LR Parse

tn

= Initially
= Stack is empty
= Input is the right hand side of 5}‘; 1.8, S
=« Initial configuration is [S7::= . S $]
= But, since position is jugt before S, we are

also just before anything that can be

derived from S
o
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i Initial state

- = Bl

5:' -(L),
Gz y B - completion

= A state is just a set of items

s Start: an initial set of items

s Completion (or closure): additional productions
whose left hand side appears to the right of the
dot in some item already in the state
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0: 5=b
Y. =l L)
Shift Actions (1) Lams

g B8 x
Su=.(L)y—=—Sii=X.
S5:ii=.X

= 1o shift past the x, add a new state with the
appropriate item(s)
= In this case, a single item; the closure adds nothing

« This state will lead to a reduction since no further shift is
possible
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0: 5=b

Y. =l L)

. _ 2, Sh=

i Shift Actions (2) 4
ge=(, L)
Shi=.88| ¢ |[Le=.1,8
Stim.{d)y—jly=. 8
Su=.X S L)
Su=TX

= If we shift past the (, we are at the beginning of

= the closure adds all productions that start with £,
which requires adding all productions starting with S
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i Goto Actions

5%
(L) 5 G
. X

—

g
5::
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= Once we reduce S, we'll pop the rhs
from the stack exposing the first state.
Add a goto transition on S for this.
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Basic Operations

s Closure (S)

= Adds all items implied by items already in S
s Goto ([, X)
= [is a set of items

= Xis a grammar symbol (terminal or non-
terminal)

= Gofo moves the dot past the symbol X in
all appropriate items in set 7
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i Closure Algorithm

s Closure(S) =
repeat J
for any item [A :i= o . XB]in S
for all productions X ::= v
add [X::= {’“.,.f] to S
until S does not change
return S
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Goto Algorithm

s Goto ([ X) =
set new to the empty set
foreachitem[A:i=a. X Blin ]
add [A:i=a X. ﬁto new
return Closure (new )

e

= This may create a new state, or may return an

existing one
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LR(0) Construction

= First, augment the grammar with an
extra start production $7::= S$

= Let 7 be the set of states
= Let £ be the set of edges
= Initialize 7 to Closure ( [S"::= . 53] )
= Initialize £ to empty

10713/ 2009 (& 2002-09 Hal Perkire & LW CSE E-14

14




LR(0) Construction Algorithm

repeat
for each state 7 in 7
foreachitem [A:i=a. X Blin [
Let new be Goto( I, X)
Add new to T if not present
Add 72~ pnew to £ if not present
until £ and 7 do not change in this iteration

= Footnote: For symbol $, we don't compute goto (I, $); instead,
we make this an acceptaction,
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i LR(0) Reduce Actions

= Algorithm:
Initialize R to empty
foreachstate 7 in 7
foreachitem [A::=a .]In [
add ([, A::=a)to R
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Building the Parse Tables (1)

= For each edge 7 — J

= if X is a terminal, put s;j in column X, row 7

of the action table (shift to state )

= If X is a non-terminal, put g/ in column X,

row 7 of the goto table
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i Building the Parse Tables (2)

= For each state /7 containing an item
[S7 ::= 5. $], put acceptin column $ of
row /

= Finally, for any state containing
[A ::= v .] put action rn7in every column
of row 7 in the table, where rnis the
production humber
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Where Do We Stand?

= We have built the LR(0) state machine
and parser tables
= No lookahead yet

=« Different variations of LR parsers add
lookahead information, but basic idea of
states, closures, and edges remains the
same
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i A Grammar that is not LR(0)

= Build the state machine and parse

tables for a simple expression grammar

S F S
E:ii=T+ E
Eii=T
Tinsx
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i LR(0) Parser for
@ @ % + : E T

Su=.E$ E:S::=E.$ ho| €8 & &
En=«THE 2 ace
Eu=.T @ 3 | r2  s4rz 12
I =X s , =
i 4 | 55 ¥ 63
5 | x _______#,.r s |3 3 13
+ T 6 r1 (11l
T = 4) |
Ei=T+.E = State 3 is has two possible
(6) Ei=.T+E actions on +
Eii=T+E e dEii=:T .
B : Eiiz.x = shift 4, or reduce 2
= .. Grammar is not LR(0)
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i SLR Parsers

s Idea: Use information about what can follow

a non-terminal to decide if we should perform
a reduction

= FEasiest form is SLR — Simple LR

= S0 we need to be able to compute
FOLLOW(A ) — the set of symbols that can
N1 follow A in any possible derivation

= But to do this, we need to compute FIRST(~) for
strings 7 that can follow A

10713/ 2009 (& 2002-09 Hal Perkins & LW CSE E-24

24




Calculating FIRST(y)

= Sounds easy... If y = X' Y7, then
FIRST(y) is FIRST(X'), right?

=« But what if we have the rule X ::= ¢?

= In that case, FIRST(v) includes anything
that can follow an X'—i.e. FOLLOW(X)
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FIRST, FOLLOW, and nullable

= nhullable(X') is true if X can derive the empty
string

= Given a string v of terminals and non-
terminals, FIRST(v) is the set of terminals
that can begin strings derived from .

s FOLLOW(X) is the set of terminals that can
immediately follow X in some derivation

= All three of these are computed together
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Computing FIRST, FOLLOW,
and nullable (1)

= Initialization

set FIRST and FOLLOW to be empty sets
set nullable to false for all non-terminals
set FIRST[a] to a for all terminal symbols a
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repeat
for each production X:= ¥, ¥, ... X
if ¥, ... ¥ areall nullable (or if k= 0)
set nullable[ X'] = true
for each 7 from 1 to k and each 7 from 7/ +1 to &
if ¥, ... ¥y areall nullable (orif /=1)

—3dd FIRST[ V'] to FIRSTX ]

if ¥, ... ¥ are all nullable (orif /= k)
|+
~add FOLLOW[X] to FOLLOW[ ¥ ]

if ¥, , are all nullable (or if i+1=j)
add ﬁRST[ Y] to FOLLOW[ ¥ ]
Until FIRST, FOLLOW, and nullable do not change
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$ Example

Grammar
Z iy
L= N ¥
YissE
=
A= Y
X:ii=a3a
10/13,/2009
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SLR Construction

= This is identical to LR(0) — states, etc., except
for the calculation of reduce actions

= Algorithm:
Initialize R to empty
for each state 7 in 7
foreachitem [A::= o .] in ]
for each terminal a in FOLLOW(A )
add ([ a, A::= o) to R —
= i.e., reduce o to 4 in state 7 only on lookahead a
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i On To LR(1)

= Many practical grammars are SLR
= LR(1) is more powerful yet

= Similar construction, but notion of an
item is more complex, incorporating
lookahead information
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i LR(1) Items

= An LR(1) item [A::= o . B, a] is
= A grammar production (A :::-'E:;:ﬁ)
= A right hand side position (the dot)
= A lookahead symbol (a)

= Idea: This item indicates that « is the
top of the stack and the next input is
derivable from [3a.

s Full construction: see the book
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LR(1) Tradeoffs

= LR(1)
= Pro: extremely precise; largest set of
grammars

= Con: potentially very large parse tables
with many states
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:L LALR(1)

= Variation of LR(1), but merge any two
states that differ only in lookahead

= Example: these two would be merged

[A::=x.,a]
[[ﬁi::=><.fb]
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:L LALR(1) vs LR(1)

= LALR(1) tables can have many fewer
states than LR(1)

= LALR(1) may have reduce conflicts

where LR(1) would not (but in practice

this doesn't happen often)
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i Language Heirarchies
/ unambiguous grammars Zﬁ‘;ﬂgﬂﬁ:f:\

/ LK)\ LR(K)

MLL(1) )| _LR 1N
7 LR(1)
/ SLR |\

/|
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i Coming Attractions

= LL(k) Parsing — Top-Down
s Recursive Descent Parsers

« What you can do if you need a parser in a

hurry
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