CSE P 501 – Compilers

LR Parsing
Hal Perkins
Autumn 2009
Agenda

- LR Parsing
- Table-driven Parsers
- Parser States
- Shift-Reduce and Reduce-Reduce conflicts
LR(1) Parsing

- We’ll look at LR(1) parsers
 - Left to right scan, Rightmost derivation, 1 symbol lookahead
 - Almost all practical programming languages have an LR(1) grammar
 - LALR(1), SLR(1), etc. – subsets of LR(1)
 - LALR(1) can parse most real languages, is more compact, and is used by YACC/Bison/etc.

GLR(1)
Bottom-Up Parsing

- Idea: Read the input left to right
- Whenever we’ve matched the right hand side of a production, reduce it to the appropriate non-terminal and add that non-terminal to the parse tree
- The upper edge of this partial parse tree is known as the *frontier*
Example

- Grammar
 - $S ::= aABe$
 - $A ::= Abc | b$
 - $B ::= d$

- Bottom-up Parse
Details

- The bottom-up parser reconstructs a reverse rightmost derivation.
- Given the rightmost derivation $S \Rightarrow \beta_1 \Rightarrow \beta_2 \Rightarrow \ldots \Rightarrow \beta_{n-2} \Rightarrow \beta_{n-1} \Rightarrow \beta_n = w$, the parser will first discover $\beta_{n-1} \Rightarrow \beta_n$, then $\beta_{n-2} \Rightarrow \beta_{n-1}$, etc.
- Parsing terminates when
 - β_1 reduced to S (start symbol, success), or
 - No match can be found (syntax error)
How Do We Parse with This?

- Key: given what we’ve already seen and the next input symbol, decide what to do.
- Choices:
 - Perform a reduction
 - Look ahead further
- Can reduce $A \Rightarrow \beta$ if both of these hold:
 - $A \Rightarrow \beta$ is a valid production
 - $A \Rightarrow \beta$ is a step in this rightmost derivation
- This is known as a *shift-reduce* parser
Sentential Forms

- If $S \Rightarrow^* \alpha$, the string α is called a *sentential form* of the grammar.

- In the derivation
 $S \Rightarrow \beta_1 \Rightarrow \beta_2 \Rightarrow \ldots \Rightarrow \beta_{n-2} \Rightarrow \beta_{n-1} \Rightarrow \beta_n = w$

 each of the β_i are sentential forms.

- A sentential form in a rightmost derivation is called a right-sentential form (similarly for leftmost and left-sentential).
Handles

- Informally, a substring of the tree frontier that matches the right side of a production
 - Even if \(A ::= \beta \) is a production, \(\beta \) is a handle only if it matches the frontier at a point where \(A ::= \beta \) was used in the derivation
 - \(\beta \) may appear in many other places in the frontier without being a handle for that particular production
Handles (cont.)

- Formally, a *handle* of a right-sentential form γ is a production $A ::= \beta$ and a position in γ where β may be replaced by A to produce the previous right-sentential form in the rightmost derivation of γ.
Handle Examples

- In the derivation
 \[S \Rightarrow aABe \Rightarrow aAde \Rightarrow aAbcde \Rightarrow abbcde \]
 - abbcde is a right sentential form whose handle is \(A::=b \) at position 2
 - \(aAbcde \) is a right sentential form whose handle is \(A::=Abc \) at position 4
 - Note: some books take the left of the match as the position
Implementing Shift-Reduce Parsers

- Key Data structures
 - A stack holding the frontier of the tree
 - A string with the remaining input
Shift-Reduce Parser Operations

- **Reduce** – if the top of the stack is the right side of a handle $A::=\beta$, pop the right side β and push the left side A.
- **Shift** – push the next input symbol onto the stack
- **Accept** – announce success
- **Error** – syntax error discovered
Shift-Reduce Example

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>abbcde$</td>
<td>shift</td>
</tr>
<tr>
<td>$a</td>
<td>bcdcde$</td>
<td>shift</td>
</tr>
<tr>
<td>$aA</td>
<td>bcde$</td>
<td>reduce</td>
</tr>
<tr>
<td>$aAb</td>
<td>bcd$</td>
<td>SR</td>
</tr>
<tr>
<td>$aAbc</td>
<td>cd$</td>
<td>SR</td>
</tr>
<tr>
<td>$aA</td>
<td>de$</td>
<td>SR</td>
</tr>
<tr>
<td>$aA</td>
<td>e$</td>
<td>SR</td>
</tr>
<tr>
<td>$aA</td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

Production rules:

- $S ::= aABe$
- $A ::= Abc | b$
- $B ::= d$

10/13/2009 © 2002-09 Hal Perkins & UW CSE D-14
How Do We Automate This?

- Def. Viable prefix – a prefix of a right-sentential form that can appear on the stack of the shift-reduce parser
 - Equivalent: a prefix of a right-sentential form that does not continue past the rightmost handle of that sentential form

- Idea: Construct a DFA to recognize viable prefixes given the stack and remaining input
 - Perform reductions when we recognize them
DFA for prefixes of

\[S ::= aABe \]
\[A ::= Abc \mid b \]
\[B ::= d \]
Trace

Stack
$ $a $ab $aA $aAb $aAbc $aA $aAa $aAB aAe $s

Input
abcde$ bce$ cde$ cdef de$ ef$ f$

10/13/2009

© 2002-09 Hal Perkins & UW CSE

D-17
Observations

- Way too much backtracking
 - We want the parser to run in time proportional to the length of the input
- Where the heck did this DFA come from anyway?
 - From the underlying grammar
 - We’ll defer construction details for now
Avoiding DFA Rescanning

- Observation: after a reduction, the contents of the stack are the same as before except for the new non-terminal on top
 - \(\therefore \) Scanning the stack will take us through the same transitions as before until the last one
 - \(\therefore \) If we record state numbers on the stack, we can go directly to the appropriate state when we pop the right hand side of a production from the stack
Stack

- Change the stack to contain pairs of states and symbols from the grammar $s_0 \ X_1 \ S_1 \ X_2 \ S_2 \ ... \ X_n \ S_n$
- State s_0 represents the accept state
 - (Not always added – depends on particular presentation)

- Observation: in an actual parser, only the state numbers need to be pushed, since they implicitly contain the symbol information, but for explanations, it’s clearer to use both.
Encoding the DFA in a Table

- A shift-reduce parser’s DFA can be encoded in two tables
 - One row for each state
 - *action* table encodes what to do given the current state and the next input symbol
 - *goto* table encodes the transitions to take after a reduction
Actions (1)

- Given the current state and input symbol, the main possible actions are
 - s/ – shift the input symbol and state i onto the stack (i.e., shift and move to state i)
 - r/j – reduce using grammar production j
 - The production number tells us how many <symbol, state> pairs to pop off the stack
Actions (2)

- Other possible *action* table entries
 - *accept*
 - blank – no transition – syntax error
 - A LR parser will detect an error as soon as possible on a left-to-right scan
 - A real compiler needs to produce an error message, recover, and continue parsing when this happens
Goto

- When a reduction is performed, \(<\text{symbol}, \text{state}>\) pairs are popped from the stack revealing a state \textit{uncovered}_s on the top of the stack.

- \texttt{goto[uncovered}_s, A\texttt{]} is the new state to push on the stack when reducing production \(A ::= \beta\) (after popping \(\beta\) and finding state \textit{uncovered}_s on top).
Reminder: DFA for

\[S ::= aABe \]
\[A ::= Abc \mid b \]
\[B ::= d \]

```
start
   \( \rightarrow \) 1
         a 2
         b 4
         b 5
             \( A ::= b \)

2 \( \rightarrow \) 3
       A
       b
       d
       6
       c
       7
           \( A ::= Abc \)

3 \( \rightarrow \) 8
       B
       e
       9
           \( S ::= aABe \)

accept
```

LR Parse Table for

1. $S ::= aABe$
2. $A ::= Abc$
3. $A ::= b$
4. $B ::= d$

<table>
<thead>
<tr>
<th>State</th>
<th>action</th>
<th>goto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>1</td>
<td>s2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>s4</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>r3</td>
<td>r3</td>
</tr>
<tr>
<td>5</td>
<td>r4</td>
<td>r4</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>r2</td>
<td>r2</td>
</tr>
<tr>
<td>8</td>
<td>r1</td>
<td>r1</td>
</tr>
<tr>
<td>9</td>
<td>r1</td>
<td>r1</td>
</tr>
</tbody>
</table>

10/13/2009
© 2002-09 Hal Perkins & UW CSE
D-26
LR Parsing Algorithm (1)

word = scanner.getToken();
while (true) {
 s = top of stack;
 if (action[s, word] = s/) {
 push word; push / (state);
 word = scanner.getToken();
 } else if (action[s, word] = r/*) {
 pop 2 * length of right side of
 production f (2*β);)
 uncovered_s = top of stack;
 push left side A of production f;
 push state goto[uncovered_s, A];
 } else if (action[s, word] = accept) {
 return;
 } else {
 // no entry in action table
 report syntax error;
 halt or attempt recovery;
 }
}
Example

Stack

$1
$1a2
$1a2b4
$1a2A3
$1a2A3b6
$1a2A3b6c7
$1a2A3
$1a2A3d5
$1a2A3b8
$1a2A3b8e9
$1

Input

<table>
<thead>
<tr>
<th>s</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>s2</td>
<td>&</td>
<td>&</td>
<td>&</td>
<td>&</td>
<td>ac</td>
</tr>
<tr>
<td>2</td>
<td>s4</td>
<td>&</td>
<td>&</td>
<td>&</td>
<td>&</td>
<td>ac</td>
</tr>
<tr>
<td>3</td>
<td>s6</td>
<td>&</td>
<td>&</td>
<td>&</td>
<td>&</td>
<td>ac</td>
</tr>
<tr>
<td>4</td>
<td>r3</td>
<td>r3</td>
<td>r3</td>
<td>r3</td>
<td>r3</td>
<td>ac</td>
</tr>
<tr>
<td>5</td>
<td>r4</td>
<td>r4</td>
<td>r4</td>
<td>r4</td>
<td>r4</td>
<td>ac</td>
</tr>
<tr>
<td>6</td>
<td>&</td>
<td>&</td>
<td>&</td>
<td>&</td>
<td>&</td>
<td>ac</td>
</tr>
<tr>
<td>7</td>
<td>r2</td>
<td>r2</td>
<td>r2</td>
<td>r2</td>
<td>r2</td>
<td>ac</td>
</tr>
<tr>
<td>8</td>
<td>&</td>
<td>&</td>
<td>&</td>
<td>&</td>
<td>&</td>
<td>ac</td>
</tr>
<tr>
<td>9</td>
<td>r1</td>
<td>r1</td>
<td>r1</td>
<td>r1</td>
<td>r1</td>
<td>ac</td>
</tr>
</tbody>
</table>

goto

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>g1</td>
<td>&</td>
<td>&</td>
</tr>
<tr>
<td>g3</td>
<td>&</td>
<td>&</td>
</tr>
<tr>
<td>g8</td>
<td>&</td>
<td>&</td>
</tr>
</tbody>
</table>

10/13/2009

© 2002-09 Hal Perkins & UW CSE
LR States

- Idea is that each state encodes
 - The set of all possible productions that we could be looking at, given the current state of the parse, and
 - Where we are in the right hand side of each of those productions
Items

- An *item* is a production with a dot in the right hand side.
- Example: Items for production $A ::= XY$

 $A ::= XY$

 $A ::= .XY$

 $\rightarrow A ::= X.Y$

 $A ::= XY.$
- Idea: The dot represents a position in the production.
$S ::= aABe$

$A ::= Abc | b$

$B ::= d$

DFA for

1. $S ::= aABe$
 - a
 - $A ::= Abc$
 - $A ::= b$

2. $S ::= a.ABe$
 - $A ::= Abc$
 - $A ::= b$

3. $S ::= aA.Be$
 - b
 - $A ::= Abc$
 - $B ::= d$

4. $A ::= b.$

5. $B ::= d.$

6. $A ::= Ab.c$

7. $A ::= Abc.$

8. $S ::= aAB.e$
 - e
 - $S ::= aAB.e.$

9. $S ::= aAB.e.$
Problems with Grammars

- Grammars can cause problems when constructing a LR parser
 - Shift-reduce conflicts
 - Reduce-reduce conflicts
Shift-Reduce Conflicts

- Situation: both a shift and a reduce are possible at a given point in the parse (equivalently: in a particular state of the DFA)
- Classic example: if-else statement

 $S ::= \text{ifthen } S \mid \text{ifthen } S \text{ else } S$
Parser States for

1. $S ::= \text{ifthen } S$
2. $S ::= \text{ifthen } S \text{ else } S$

- State 3 has a shift-reduce conflict
 - Can shift past else into state 4 (s4)
 - Can reduce (r1)
 $S ::= \text{ifthen } S$

(Note: other $S ::= \text{ifthen}$ items not included in states 2-4 to save space)
Solving Shift-Reduce Conflicts

- Fix the grammar
 - Done in Java reference grammar, others
- Use a parse tool with a “longest match” rule – i.e., if there is a conflict, choose to shift instead of reduce
 - Does exactly what we want for if-else case
 - Guideline: a few shift-reduce conflicts are fine, but be sure they do what you want
Reduce-Reduce Conflicts

- Situation: two different reductions are possible in a given state
- Contrived example

 \[
 S ::= A \\
 S ::= B \\
 A ::= x \\
 B ::= x
 \]
1. $S ::= A$
2. $S ::= B$
3. $A ::= x$
4. $B ::= x$

State 2 has a reduce-reduce conflict ($r3, r4$)
Handling Reduce-Reduce Conflicts

- These normally indicate a serious problem with the grammar.
- Fixes
 - Use a different kind of parser generator that takes lookahead information into account when constructing the states (LR(1) instead of SLR(1) for example)
 - Most practical tools use this information
 - Fix the grammar
Another Reduce-Reduce Conflict

- Suppose the grammar separates arithmetic and boolean expressions

 \[\text{expr} ::= \text{aexp} \mid \text{bexp} \]
 \[\text{aexp} ::= \text{aexp} \ast \text{aident} \mid \text{aident} \]
 \[\text{bexp} ::= \text{bexp} \&\& \text{bident} \mid \text{bident} \]
 \[\text{aident} ::= \text{id} \]
 \[\text{bident} ::= \text{id} \]

- This will create a reduce-reduce conflict
Covering Grammars

- A solution is to merge `aident` and `bident` into a single non-terminal (or use `id` in place of `aident` and `bident` everywhere they appear)

- This is a covering grammar
 - Includes some programs that are not generated by the original grammar
 - Use the type checker or other static semantic analysis to weed out illegal programs later
Coming Attractions

- Constructing LR tables
 - We’ll present a simple version (SLR(0)) in lecture, then talk about extending it to LR(1)
- LL parsers and recursive descent
- Continue reading ch. 4