Agenda for Today

- Parsing overview
- Context free grammars
- Ambiguous grammars
- Reading: Cooper/Torczon ch. 3, or Dragon Book ch. 4, or Appel ch. 3
Parsing

- The syntax of most programming languages can be specified by a *context-free grammar* (CGF)

- Parsing: Given a grammar G and a sentence w in $L(G)$, traverse the derivation (parse tree) for w in some *standard order* and do *something useful* at each node
 - The tree might not be produced explicitly, but the control flow of a parser corresponds to a traversal
program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if (expr) stmt
expr ::= id | int | expr + expr
id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

\[
\text{a} = 1 \ ; \ \text{if} \ (\ \text{a} \ + \ 1 \) \ \text{b} = 2 \ ;
\]
“Standard Order”

- For practical reasons we want the parser to be *deterministic* (no backtracking), and we want to examine the source program from *left to right*.
 - (i.e., parse the program in linear time in the order it appears in the source file)
Common Orderings

- **Top-down**
 - Start with the root
 - Traverse the parse tree depth-first, left-to-right (leftmost derivation)
 - LL(k)

- **Bottom-up**
 - Start at leaves and build up to the root
 - Effectively a rightmost derivation in reverse(!)
 - LR(k) and subsets (LALR(k), SLR(k), etc.)
“Something Useful”

- At each point (node) in the traversal, perform some *semantic action*
 - Construct nodes of full parse tree (rare)
 - Construct abstract syntax tree (common)
 - Construct linear, lower-level representation (more common in later parts of a modern compiler)
 - Generate target code on the fly (1-pass compiler; not common in production compilers – can’t generate very good code in one pass – but great if you need a quick’n dirty working compiler)
Context-Free Grammars

- Formally, a grammar G is a tuple $<N, \Sigma, P, S>$ where
 - N a finite set of non-terminal symbols
 - Σ a finite set of terminal symbols
 - P a finite set of productions
 - A subset of $N \times (N \cup \Sigma)^*$
 - S the start symbol, a distinguished element of N
 - If not specified otherwise, this is usually assumed to be the non-terminal on the left of the first production
Standard Notations

- a, b, c elements of Σ
- w, x, y, z elements of Σ^*
- A, B, C elements of N
- X, Y, Z elements of $N \cup \Sigma$
- α, β, γ elements of $(N \cup \Sigma)^*$
- $A \rightarrow \alpha$ or $A ::= \alpha$ if $<A, \alpha>$ in P
Derivation Relations (1)

- $\alpha A \gamma \Rightarrow \alpha \beta \gamma$ iff $A ::= \beta$ in P
 - derives
- $A \Rightarrow^* w$ if there is a chain of productions starting with A that generates w
 - transitive closure
Derivation Relations (2)

- $w A \gamma \Rightarrow_{lm} w \beta \gamma$ iff $A ::= \beta$ in P
 - derives leftmost

- $\alpha A w \Rightarrow_{rm} \alpha \beta w$ iff $A ::= \beta$ in P
 - derives rightmost

- We will only be interested in leftmost and rightmost derivations – not random orderings
Languages

- For A in N, $L(A) = \{ w \mid A \Rightarrow^* w \}$
- If S is the start symbol of grammar G, define $L(G) = L(S)$
 - Nonterminal on the left of the first rule is taken to be the start symbol if one is not specified explicitly
Reduced Grammars

- Grammar G is reduced iff for every production $A ::= \alpha$ in G there is some derivation

 $S \Rightarrow^* x A z \Rightarrow x \alpha z \Rightarrow^* xyz$

 i.e., no production is useless

- Convention: we will use only reduced grammars
Ambiguity

- Grammar G is \textit{unambiguous} iff every w in $L(G)$ has a unique leftmost (or rightmost) derivation
 - Fact: unique leftmost or unique rightmost implies the other

- A grammar without this property is \textit{ambiguous}

- Note that other grammars that generate the same language may be unambiguous

- We need unambiguous grammars for parsing
Example: Ambiguous Grammar for Arithmetic Expressions

\[\text{expr ::= expr + expr} \mid \text{expr - expr} \]
\[\mid \text{expr * expr} \mid \text{expr / expr} \mid \text{int} \]

\[\text{int ::= 0} \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9 \]

- Exercise: show that this is ambiguous
 - How? Show two different leftmost or rightmost derivations for the same string
 - Equivalently: show two different parse trees for the same string
Example (cont)

- Give a leftmost derivation of $2 + 3 \times 4$ and show the parse tree

```
expr ::= expr + expr | expr - expr
     | expr * expr | expr / expr | int
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```
Example (cont)

- Give a different leftmost derivation of $2 + 3 \times 4$ and show the parse tree
Another example

- Give two different derivations of $5+6+7$
What’s going on here?

- The grammar has no notion of precedence or associatively

Solution

- Create a non-terminal for each level of precedence
- Isolate the corresponding part of the grammar
- Force the parser to recognize higher precedence subexpressions first
Classic Expression Grammar

- expr ::= expr + term | expr − term | term
- term ::= term * factor | term / factor | factor
- factor ::= int | (expr)

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
Check: Derive $2 + 3 \times 4$
Check: Derive $5 + 6 + 7$

- Note interaction between left- vs right-recursive rules and resulting associativity
Check: Derive $5 + (6 + 7)$

expr ::= expr + term | expr - term | term
term ::= term * factor | term / factor | factor
factor ::= int | (expr)
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
Another Classic Example

- Grammar for conditional statements

 $ifStmt ::= if (cond) stmt$
 |
 $if (cond) stmt$ else $stmt$

- Exercise: show that this is ambiguous
 - How?
One Derivation

ifStmt ::= if (cond) stmt
 | if (cond) stmt else stmt
Another Derivation

ifStmt ::= if (cond) stmt
 | if (cond) stmt else stmt

if (cond) if (cond) stmt
 else stmt
Solving “if” Ambiguity

- Fix the grammar to separate if statements with else clause and if statements with no else
 - Done in Java reference grammar
 - Adds lots of non-terminals
- Use some ad-hoc rule in parser
 - “else matches closest unpaired if”
Parser Tools and Operators

- Most parser tools can cope with ambiguous grammars
 - Makes life simpler if used with discipline
- Typically one can specify operator precedence & associativity
 - Allows simpler, ambiguous grammar with fewer nonterminals as basis for generated parser, without creating problems
Parser Tools and Ambiguous Grammars

- Possible rules for resolving other problems
 - Earlier productions in the grammar preferred to later ones
 - Longest match used if there is a choice
- Parser tools normally allow for this
 - But be sure that what the tool does is really what you want
Coming Attractions

- Next topic: LR parsing
 - Continue reading ch. 3 or 4 or 3
 (depending on your book)