* CSE P 501 — Compilers

Languages, Automata, Regular
Expressions & Scanners

Hal Perkins
Autumn 2009

10/5/ 2009 @ 2002-00 Hal Perkire & Uw C5E

B-1

Agenda

= Basic concepts of formal grammars
(review)

= Regular expressions

s Lexical specification of programming
languages

= Using finite automata to recognize
regular expressions

s Scanners and Tokens

10/6f2009 (& 2002-09 Hal Perkire & LW CSE

B-2

i Programming Language Specs

= Since the 1960s, the syntax of every
significant programming language has
been specified by a formal grammar

" = First done in 1959 with BNF (Backus-Naur
Form or Backus-Normal Form) used to
_ specify the syntax of ALGOL 60

—= Borrowed from the linguistics community
| (Chomsky)

10/6f2009 (& 2002-09 Hal Perkins & LW CSE B-3

Grammar for a Tiny Language

- [=program : @I p{ﬁf&@
y : = assignStmt | ifStmt

m assignStmt .= id = expr;

(w i#Stmt 2= if (expr)(stm Jhaspmess”

m expr..=id| int| expr+ expr
midi=alblcliljlkIn|x]|y]|z
L wint:=0]|1]2]3]4]5]6]7]|8]°9

10/6f2009 (& 200E-09 Hal Perking & LW CSE B-4

Productions

= The rules of a grammar are called productions
= Rules contain

= Nonterminal symbols: grammar variables (program,
statement, id, etc.)

= Terminal symbols; concrete syntax that appears in programs
(af br C;_Ur 1!1!:_1 (f)1)
= Meaning of

nonterminal ;. = <sequence of terminals and nonterminals>

= In a derivation, an instance of nonterminalcan be replaced
b¥ the sequence of terminals afdmonterminals on the right
of the production
= Often, there are two or more productions for one
nonterminal — use any in different parts of derivation

10/6f2009 & 2002-09 Hal Perkire & LW CSE E-5

Alternative Notations

= There are several syntax notations for
productions in common use; all mean
the same thing
irstmt = if (expr) stmt
iStmt — if (expr) stmt
<ifStmt> ::= if (<expr>) <stmt>

10/6f2009 (& 2002-09 Hal Perkire & LW CSE

B-G

Example
Derivation

-

,D.f"'.:::g-'am = stafemant | program stateman
statemant | = gesigistmie | istmi
gssignSimt = id = axpr

ot = 10f [axpor) stmt

expr = i | int| expr+ expr

@ =alblc|i|ilk|n|x|y]|z

- _ int =0 1]2]3]4|5|6|7|8]|9
o
preyro~
F 4 N
5 fudenortl™ J LTt
Lt (
mr?.: expv chotenert
W[S 4 e
/ ex<pr | ot
/ ind- / l
/ id 1t
a=1,; if (a + 1) b = 2 ;
10/6f2009 @ 2002-02 Hal Perkirs & LW CSE B-7

i Parsing

= Parsing: reconstruct the derivation
(syntactic structure) of a program

= In principle, a single recognizer could
work directly from a concrete,
character-by-character grammar

= In practice this is never done

10/6f2009 (& 2002-09 Hal Perkire & LW CSE

B-5

Parsing & Scanning

= In real compilers the recognizer is split into
two phases

= Scanner: translate input characters to tokens

= Also, report lexical errors like illegal characters and illegal
symbols

s Parser: read token stream and reconstruct the
derivation

scuUrce S fokens [EES

10/6f2009 & 2002-09 Hal Perkire & LW CSE E-9

Characters vs Tokens (review)

= Input text

s [oken Stream

IF

LPAREN | | ID(x)

GEQ

ID(y)

// this statement does very little
if (x s=y)y=42:

RPAREN | | ID(y)

BECOMES

INT(42)

5COLON

10/6f2009

(& 2002-09 Hal Perkins & LW CSE

B-10

10

Why Separate the Scanner
and Parser?

= Simplicity & Separation of Concerns

= Scanner hides details from parser
(comments, whitespace, input files, etc.)

= Parser is easier to build; has simpler input
stream (tokens)
= Efficiency

[~ = Scanner can use simpler, faster design

=« (But still often consumes a surprising amount
of the compiler’s total execution time)

P

10/gf2009 @ 2002-09 Hal Perkirs & W CSE B-11

11

Tokens

= Idea: we want a distinct token kind
(lexical class) for each distinct terminal
symbol in the programming language
= Examine the grammar to find these

= Some tokens may have attributes

= Examples: integer constant token will have
the actual integer (17, 42, ...) as an
attribute; identifiers will have a string with
the actual id

10/6f2009 (& 2002-09 Hal Perkire & LW CSE B-12

12

Typical Tokens in
Programming Languages

+ PLUS Agyor
o ")

-FIOA] i< <====l=],

. Each of these is nc:nrrnally a distinct Iexu:al class

[= Keywords

[' z Operators & Punctuation

= if while for goto return switch void ...
= Each of these is also a distinct lexical class (nofa string)

[. Identifiers

= Asingle ID lexical class, but parameterized by actual id

[. Integer constants
= A single INT lexical class, but parameterized by int value

= Other constants, etc.

10/gf2009 @ 2002-09 Hal Perkirs & W CSE B-13

13

L

\\l\

PrinEipIe of Longest Match

= In most languages, the scanner should pick
the longest possible string to make up the
next token if there is a choice

= Example o=
return maybe != iffy;
should be recognized as 5 tokens

RETURN | | ID(maybe) | | NEQ | | ID(iffy) | [SCOLON

l.e., !=is one token, not two, “iffy” is an ID, not
IF followed by ID(fy)

10/6f2009 (& 2002-09 Hal Perkire & LW CSE B-14

14

Formal Languages & Automata
Theory (a review in one slide)

= “Alphabet: a finite set of symbols

= “String: a finite, possibly empty sequence of symbols
<y?7* from an alphabet

= /Language: a set, often infinite, of strings
= Finite specifications of (possibly infinite) languages
[. Automaton — a recognizer; a machine that accepts all strings

< F

in a language (and rejects all other strings)

= Grammar — a generator; a system for producing all strings in
the language (and no other strings)

0 Farticular language may be specified by many
different grammars and automata

E' A grammar or automaton specifies only one language

10/8f 2009 @ 200=-09 Hal Perkins & Lhw CSE E-15

15

Regular Expressions and FAs

= The lexical grammar (structure) of most
programming languages can be
specified with regular expressions

= (Sometimes a little cheating is needed)

= Tokens can be recognized by a
deterministic finite automaton

= Can be either table-driven or built by hand
based on lexical grammar

10/6f2009 (& 2002-09 Hal Perkins & LW CSE E-16

16

Regular Expressions

= Defined over some alphabet 2

= For programming languages, alphabet is
usually ASCII or Unicode

= If reis a regular expression, _ng_)
the [: language (set of strings) generated
by re

10/6f2009 & 2002-09 Hal Perkire & LW CSE B-17

17

$ Fundamental REs

—

re |L(re) |Notes

a |{a} Singleton set, for each a in 2
£ iﬁl Empty string

& o Empty language

10/ef2009

& 2002-09 Hal Perkire & Lw CSE

E-13

18

$ Operations on REs

re |l(re) Notes

Fa

rs |L(r)L(s) Concatenation

rls L(r) ,L(s) [Combination (union)

vl
r* |L(r)* 0 or more occurrences
(Kleene closure)

= Precedence: * (highest), concatenation, | (lowest)
= Parentheses can be used to group REs as needed

10/ef2009 & 2002-09 Hal Perkire & Lw CSE

E-19

19

$ Abbreviations

= The basic operations generate all possible regular
expressions, but there are common abbreviations
used for convenience. Typical examples:

Abbr. |Meaning Notes

r+ (rr¥) 1 or more occurrences

r? (r|e) 0 or 1 occurrence

[a-z] |(alb|...|]z) |1 characterin given range
——— — -

[abxyz] | (a|b[x|y|z) |1 of the given characters

10/5/2009 (€ 2002-09 Hal Perkire & W CSE B-20

20

Examples

re Meaning

4 single + character

v single “character

= single = character
= 2 character sequence
<= 2 character sequence
XyZZYy 5 character sequence

10/6f2009

(& 2002-09 Hal Perkins & LW CSE

B-21

21

:L More Examples

re Meaning

abc]+ B I B Bl e
[abc]* i o E

0-9]+ [e anior digltr

1-9][0-9]* ST
ﬂ;a -zA-Z][a-zA-Z0-9_]* 1l

10/5/2009 (€ 2002-09 Hal Perkire & W CSE B-22

22

i Abbreviations

= Many systems allow abbreviations to

make writing and reading definitions or

specifications easier

b e L
Cnarne = re Jigits:.= Lo=q],

— quri'-f—r ——
= Restriction: abbreviations may not be

circular (recursive) either directly or
| indirectly (else would be non-regular)

10/6f2009 (& 2002-09 Hal Perkire & LW CSE

B-23

23

Example

= Possible syntax for numeric constants

« digit :;= [0-9]
“digits .= digit+ |
v humber ::= digits (. digits)?
-ﬂelf] (+ | —)?ﬁdigits ?
B i i

10/6f2009 (& 2002-09 Hal Perkire & LW CSE B-24

24

Recognizing RES

= Finite automata can be used to
recognize strings generated by regular
expressions

= Can build by hand or automatically

= Not totally straightforward, but can be
done systematically

= Tools like Lex, Flex, Jlex et seq do this
automatically, given a set of REs

10/6f2009 (& 2002-09 Hal Perkire & LW CSE B-25

25

#D
Finite State Automato

= A finite set of states

= One marked as initial state

= One or more marked as final states

= States sometimes labeled or numbered
A set of transitions from state to state

« Each labeled with symbol from Z, or £
Operate by reading input symbols (usually characters)

= Transition can be taken if labeled with current symbol

= g-transition can be taken at any time

L Accept when final state reached & no more input

= Scanner uses a FSA as a subroutine — accept longest match each
time called, even if more input; i.e., run the FSA from the current
location in the input each time the scanner is called

C Reject if no transition possible, or no more input and not in final
state (DFA

10/6f2009 (& 2002-09 Hal Perkire & LW CSE B-26

26

i Example: FSA for “cat”

10/af2009 @ 2002-09 Hal Perkire & Uw CSE

~2(®
i DFA vs NFA 6

= Deterministic Finite Automata (DFA)

= No choice of which transition to take under any
condition

= Non-deterministic Finite Automata (NFA)
s Choice of transition in at least one case

= Accept if some way to reach final state on given
input

= Reject if no possible way to final state

10/6f2009 (& 2002-09 Hal Perkire & LW CSE B-28

28

i FAs in Scanners

= Want DFA for speed (no backtracking)

= Conversion from regular expressions to
“ NFA is easy

= There is a well-defined procedure for
« converting a NFA to an equivalent DFA

10/6f2009 (& 2002-09 Hal Perkins & LW CSE B-29

29

i From RE to NFA: base cases

10/6f2009 (& 2002-09 Hal Perkire & LW CSE

rs

10/6f2009 (& 2002-09 Hal Perkire & LW CSE B-31

31

10/5/2009 (€ 2002-09 Hal Perkirs & v CSE

B-32

32

10/6f2009

(& 2002-09 Hal Perkire & LW CSE

B-33

33

i From NFA to DFA

= Subset construction

s Construct a DFA from the NFA, where each DFA state
represents a set of NFA states

= Key idea

= The state of the DFA after reading some input is the set of
all states the NFA could have reached after reading the
same input

= Algorithm: example of a fixed-point computation
= If NFA has n states, DFA has at most 27 states

= => DFA is finite, can construct in finite # steps

= Resulting DFA may have more states than needed
« = See books for construction and minimization details

10/6f2009 (& 2002-09 Hal Perkire & LW CSE B-34

34

Example: DFA for hand-
written scanner

s Idea: show a hand-written DFA for some
typical programming language constructs
= Then use to construct hand-written scanner

= Setting: Scanner is called whenever the
parser needs a hew token
= Scanner stores current position in input

= Starting there, use a DFA to recognize the longest
possible input sequence that makes up a token
and return that token

10/gf2009 @ 2002-09 Hal Perkins & LW CSE B-35

35

Scanner DFA Example (1)

—()
—=end of input =© Acozpt EOF

10/af2009

whitespace
oF corments |‘ -, f'."- l
r *

'T ok it

v |

)

v
» @ Accapt LFAREN

=@ Acozpt HFARERN

=® Acoepl SCOLON

@ 2002-09 Hal Perkire & Uw CSE

E-26

36

i Scanner DFA Example (2)

Accept NEQ

[other]

e
W/

@ 2002-09 Hal Perkire & Uw CSE

Accept MOT

AC r:ept LEG

Acoept LESS

@@@”@

37

= «32:94%

i Scanner DFA Example (3)

Q‘
[other] @ N—

fl

10/af2009 @ 2002-09 Hal Perkire & Uw CSE E-22

38

Scanner DFA Example (4)

' m_'-z‘J
: = Ly O_-E> o
/ S
[azA-Z] [a-zA-Z20-9_]

=

Lother] : Accept 1D or keyword
— -

= Strategies for handling identifiers vs keywords
s Hand-written scanner: look up identifier-like things in table of
keywords to classify (good application of perfect hashing)
= Machine-generated scanner: generate DFA will appropriate
transitions to recognize keywords
= Lots ‘o states, but efficiert (no extra lockup step)

10/af2009 @ 2002-09 Hal Perkire & Uw CSE E-29

39

Implementing a Scanner by
$ Hand — Token Representation

= A token is a simple, tagged structure

public class Token {
_?-publi-:: int kind; /[token’s lexical class
public int intVal; // integer value if class = INT

public String id; /[actual identifier if class = ID

/[lexical classes

public static final int EOF = 0; ""'—;‘]"“encl of file” token
better: Use) public static final int ID = 1; /I identifier , not keyword

rLimms if you public static final int INT = 2; [{ integer
kit public static final int LPAREN = 4:
public static final int SCOLN = 5;
public static final int WHILE = 6;
/[etc. etc, etc. ... —

10/8{2009 @ 2002-09 Hal Perkire & U CSE E-40

40

i Simple Scanner Example

/] global state and methods

[static char nextch: /] next unprocessed input character
i

/] advance to next input char
void getch() { ... }

/] skip whitespace and comments
L—void skipWhitespace() { ... }

10/6f2009 (& 2002-09 Hal Perkire & LW CSE B-41

41

Scanner getToken() method

/[return next input token
public Token getToken() {
Aoken result;

/skip’mﬁufhite Space();

result = new Token(Token.EOF); return result;

h

switch(nextch) {
case '(: result = new Token(Token.LPAREN); getch(); return result;

case ") : result = new Token(Tokem.RPAREN); getch(); return result;
case ';": result = new Token(Token.SCOLON); getch(); return result;

Eif (no more input) {

[/ etc. ...

10/af2009 @ 2002-09 Hal Perkire & Uw CSE

E-42

42

getToken() (2)

case 't [/ lor 1=

— getch();
if (nextch =='=") {
result = new Token(Token.NEQ); getch(); return result;
+else { il -
result = new Token(Token.NOT); return result;
b o
case '<": [/ <or <=
getch();
if (nextch =="=") {
result = new Token(Token.LEQ); getch(); return result;
} else {
result = new Token(Token.LESS); return result;
b
/[etc. ...
10fefz009 @ 2002-09 Hal Perkire & LW CSE

E-43

43

getToken() (3)

case '0": case '1: case '2": case '3': case 4"
[case '5': case '6 case '7': case 'B": case 9"
/[integer constant
—5String num = nextch;
—getch();
while (nextch is a digit) {
[num = num + nextch; getch();
h
[result = new Token(Token.INT, Integer(num).intValue());
return result;

10/af2009 @ 2002-09 Hal Perkire & Uw CSE E-44

44

getToken (4)

case 'a"; ... case Z'
case 'A": ...case'Z": [/ id or keyword
string s = nextch; getch();
while (nextch is a letter, digit, or underscore) {
£ s = s + nextch; getch();
7
if (s is a keyword) {
result = new Token(keywordTable.getKind(s));
+else {
result = new Token(Token.ID, s);

h

return result;

10/6f2009 (& 2002-09 Hal Perkire & LW CSE B-45

45

Project Notes

= For the course project (when we get
there), use a lexical analyzer generator

= Suggestion: JFex a Java Lex-lookalike

——

= Works with CUP — a Java yacc/bison
implementation

= Symbolic constant definitions for lexical
classes shared between scanner/parser —
customarily defined in parser input file

10/6f2009 (& 2002-09 Hal Perkire & LW CSE B-46

46

i Coming Attractions

= Homework this week: paper exercises on
regular expressions, etc.

= Next week: first part of the compiler
assignment — the scanner
= Based on the project from Ch. 2 of Appel’s book
= Next topic: parsing

=« Will do LR parsing first — use this for the project
(thus CUP (Bison/YACC-like) instead of JavaCC or
ANTLR)

s Good time to start reading next chapter(s)

10/6f2009 (& 2002-09 Hal Perkire & LW CSE B-47

47

