
CSE P 501 exam checklist Au09

You may bring: Your compiler textbook(s), plus the course slides and notes. No
additional books or reference materials, including homework assignments, sample
solutions, or old exams.

You may access the course slides using a laptop provided that you only look at material
that is linked from
http://www.cs.washington.edu/education/courses/csep501/CurrentQtr/lectures/slides.html
. No other material on the course web site (including videos) or elsewhere on the web
may be used.

• Interpreters and compilers – key differences
• Gross structure of compilers – task of front/middle/back ends
• Basic notions of grammars – productions, terminals, non-terminals
• Regular expressions and DFAs

o RE operators
o Constructing REs and DFAs (but you do not need to know the full RE ->

NFA -> DFA construction algorithms)
• Scanners – transforming character stream to token stream
• Context-free grammars

o Derivations, leftmost, rightmost, etc.
o Constructing grammars for sets of strings
o Ambiguity

• LR parsing
o Shift-reduce parsing
o Construction of LR(0) and SLR(1) parse tables

 Items
 Shift-reduce and reduce-reduce conflicts; table differences between

LR(0) and SLR(1) due to lookahead
o First, follow, and nullable

• LL and recursive-descent parsers
o How to construct a hand-written recursive-descent parser
o Fixing grammar rules – left recursion, ambiguities like dangling else’s

• Intermediate representations – particularly abstract syntax trees (ASTs)
• Static semantics & symbol tables

o Typical kinds of conditions that are tested here
o Basic symbol table structures for languages like MiniJava

• Basic x86 architecture
o Core 32-bit instruction set – don’t memorize details, but be generally

familiar with the basics
o Be able to write simple C-level functions in x86 assembly language,

including, in particular, calling conventions and stack frame layouts.
• Code shape

o Representation of common high-level language constructs in x86
assembly language

o Implementation of dynamic dispatch
 Method tables and overriding
 Be sure you understand basic Java rules for method overriding and

field hiding in extended classes.
o Representation of objects and implementation of new

• Back-end issues. You should have a general familiarity with the basic ideas
discussed in lecture, but are not expected provide detailed implementations.

o Instruction selection – what are the basic ideas behind tree pattern
matching

o Instruction scheduling – what is list scheduling; what are some of the
issues that determine a good instruction schedule (resource contention
including registers; operation latencies)

o Register allocation – what is the role of the interference graph and the
ideas behind using graph coloring to allocate registers

• Dataflow analysis and optimization
o What is the control flow graph, what are basic blocks
o Dominators and immediate dominators; how to find a loop in a cfg
o General form of dataflow equations (def, use, in, and out sets) and how

these can be used to solve typical problems like liveness analysis; be able
to set up or solve simple problems like the liveness one we did in lecture

o Basic idea of SSA – what it means; be able to hand translate a simple cfg
into SSA with appropriate phi functions (you do not need to be able to
trace the full algorithms that do this)

o Interaction between analysis and optimizations – what can we do with the
information that is discovered by the analysis; how to the transformations
interact with the analysis

