
 CSE P 501 Exam 3/6/08

 Page 1 of 13

Name ________________________________

There are 8 questions worth a total of 100 points. Please budget your time so you get to
all the questions, particularly some of the later ones that are worth more points than some
of the earlier ones. Keep your answers brief and to the point.

You may refer to the following references:

 Course lecture slides and notes
 Your primary compiler textbook(s)

 No other books or other materials, including old exams or homework.

Please wait to turn the page until everyone is told to begin.

 CSE P 501 Exam 3/6/08

 Page 2 of 13

Score _________________

1 _______ / 12

2 _______ /10

3 _______ /15

4 _______ /15

5 _______ /15

6 _______ /8

7 _______ /10

8 _______ /15

 CSE P 501 Exam 3/6/08

 Page 3 of 13

1. (12 points) Write a regular expression or set of regular expressions that generate the
following sets of strings. You can use abbreviations (i.e., name = regular expression) if it
helps to make your answer clearer.

(a) (6 points) All strings of 0’s and 1’s where either there are no 1’s in the string, or the
number of 1’s is odd (i.e., a single 1, or three 1’s, or five 1’s, etc.).

(b) (6 points) All identifiers that are formed using the following rules:
 - consist of only lower case letters a-z, digits 0-9, and underscore _
 - must begin with a letter
 - must not end with an underscore
 - no two underscores may appear next to each other

Examples: Legal identifiers: hi, hi_there, only1idea, a_very_long_name.
Illegal identifiers: double__underscore, 1digit_at_the_beginning, ends_with_underscore_

 CSE P 501 Exam 3/6/08

 Page 4 of 13

2. (10 points) The simple expression grammar

 expr ::= expr + expr | expr * expr | id | (expr)

is known to be ambiguous. One of the summer interns has proposed replacing this with
the following grammar to solve the problem:

 expr ::= term + term | term
 term ::= factor * factor | factor
 factor ::= id | (expr)

(a) (5 points) Does this new grammar generate the same set of strings as the old one? If
they do generate the same strings, explain why (this does not need to be a formal proof,
but it should be a convincing explanation). If not, give an example of some expression
generated by one of the grammars that is not generated by the other

(b) (5 points) Is this new grammar ambiguous? (For this part of the question, ignore the
issue of whether or not it generates the same set of strings as the original grammar.) If it
is ambiguous, give an example that shows that it is; if not, explain why not (again, this
does not need to be a formal proof, but it should be a convincing explanation).

 CSE P 501 Exam 3/6/08

 Page 5 of 13

3. (15 points) The obligatory LR-parsing question.

Consider the following grammar:

 0. expr′ ::= expr $
 1. expr ::= (type) expr
 2. expr ::= id
 3. type ::= id

(a) (12 points) Draw the LR(0) state machine for this grammar. You do not need to write
out the parser tables or first/follow/nullable sets.

(b) (3 points) Is this grammar LR(0)? Why or why not?

 CSE P 501 Exam 3/6/08

 Page 6 of 13

4. (15 points) The other (mostly) obligatory question.

Consider the following C function:

 int thing(int p, int q) {
 int temp;
 temp = p + q;
 return fun(temp) + temp;
 }

You should assume that fun is another function declared elsewhere in the same program
with the following prototype: int fun(int x); (i.e., assume that you can call fun
without having to declare it further, either in C or in an assembly language version).

(a) (4 points) Draw the stack frame for function thing as it would appear in an x86
program using the standard C calling conventions. Your picture should show the layout
of function parameters, local variables, and the esp and ebp registers as they exist after
the function prologue has executed and has allocated the stack frame, but before any of
the statements in the body of the function have been executed. Be sure to show the
numeric offsets from register ebp to each parameter and local variable.

(continued next page)

 CSE P 501 Exam 3/6/08

 Page 7 of 13

4. (cont). (b) (11 points) Translate function thing to x86 assembly language. Your
translation should not omit any statements, i.e., it should store the result of p+q in temp,
but otherwise it can be any reasonable x86 program that follows the C stack layout and
calling conventions. You may use either the Intel/Microsoft or GNU conventions for
assembly language syntax and layout. (Just be sure you pick one or the other and don’t
mix them.)

Function definition repeated here for convenience:

 int thing(int p, int q) {
 int temp;
 temp = p + q;
 return fun(temp) + temp;
 }

 CSE P 501 Exam 3/6/08

 Page 8 of 13

5. (15 points) Suppose we have the hypothetical machine from lecture with the
following instructions and latency times:

Operation Cycles
LOAD 3
STORE 3
ADD 1
MULT 2

Now, suppose we have the following sequence of instructions

 (a) LOAD r1 ← x
 (b) LOAD r2 ← y
 (c) MULT r3 ← r1 * r2
 (d) LOAD r4 ← z
 (e) ADD r5 ← r3 + r4
 (f) STORE ans ← r5

(a) (6 points) Draw a precedence graph showing the dependencies between these
instructions. Label each node (instruction) in the graph with both the instruction letter (a-
f) and its latency – the number of cycles between the beginning of that instruction and the
end of the graph

(continued next page – apologies for all the page flipping this might require)

 CSE P 501 Exam 3/6/08

 Page 9 of 13

(b) (6 points) Rewrite the instructions in the order they would be chosen by forward list
scheduling (i.e., choosing at each step an instruction that is not dependent on any other
instruction that has not yet been issued). If there is a tie at any step for which instruction
would best be scheduled next, pick one of them arbitrarily. You do not need to show
your bookkeeping or trace the algorithm, although if you leave some clues around it
could be useful if we need to figure out how to assign partial credit.

(c) (3 points) How many cycles were required by the original instruction schedule? How
many cycles are required by the new schedule you created in part (b)?

 CSE P 501 Exam 3/6/08

 Page 10 of 13

6. (8 points) We looked at several iterative dataflow analysis problems involving various
GEN, KILL, IN, and OUT sets. These included live variable analysis, reaching
definitions, very busy expressions, and available expressions.

Suppose we want to use iterative dataflow analysis to report all variables that might be
uninitialized at some point where they are used in the program. Which of the iterative
dataflow analysis problems could we use to determine this information? How would we
use the information reported by that analysis to decide which variables might be
uninitialized?

(If none of the standard analysis problems listed above give the information needed to
detect uninitialized variables, describe a dataflow analysis problem that would work, and
how it would be used.)

 CSE P 501 Exam 3/6/08

 Page 11 of 13

7. (10 points) Consider the following control-flow graph (with apologies for the less
than spectacular artwork):

For each node in this flowgraph, list the nodes that dominate it, and list the node that is its
immediate dominator.

Node Dominators Immediate Dominator

A

B

C

D

E

F

A

B

C

D

F

E

 CSE P 501 Exam 3/6/08

 Page 12 of 13

8. (15 points) In the lectures on dataflow problems, we looked at an example involving
liveness. That problem determines which variables are live on exit from each block in
the control flow graph.

Another fundamental dataflow problem is reaching definitions. In this problem, we look
at each definition that appears in a block in the control flow graph. The problem is to
determine which other blocks in the control flow graph could potentially see the value of
the variable that was assigned in that definition. For example, in the following diagram:

the definitions D2 and D3 reach B3, because there are no subsequent assignments to x or
y between those definitions and B3. But definition D1 does not reach B3, because the
reassignment to x in B2 kills the definition D1. (Definition D1 does reach B2, but it is
killed there and reaches no further.)

A definition d in block p reaches block q if there is at least one path from p to q along
which definition d is not killed. For instance, in the above example, if there were another
path in the flowgraph from B1 to B3, then it could be possible for D1 to reach B3, in
spite of it being killed in B2 (depending on what happens on that other path, of course).

We can set this up as a dataflow problem as follows. For each block in the control-flow
graph, we define GEN to be the definitions generated in that block and KILL to be the
definitions killed by that block. This information can be computed once, statically. In
particular, if a block contains

Then d is in the GEN set for this block (assuming it was not killed later in the same
block). The KILL set for this block contains the set of all other definitions d′, where d′ is
a different definition of variable t somewhere in the program. In the example at the top
of the page, definition D3 is in the GEN set for B2, and definition D1 is in B2’s KILL set
(because it also defines the same variable, x). To simplify this problem, we will restrict
ourselves to blocks that contain a single statement each.

(continued next page)

D1: x := 17
D2: y := 42

D3: x := 55

B1

B2

B3

d: t := a op b

 CSE P 501 Exam 3/6/08

 Page 13 of 13

8. (cont) The dataflow problem for reaching definitions, then, can be defined as follows:

 GEN[b] = { set containing definition d from block b, if any }
 KILL[b] = { all other definitions that assign to a variable that is defined in b }

 IN[b] = ∪p∈pred[b] OUT[p]

 OUT[b] = GEN[b] ∪ (IN[b] – KILL[b])

Now (finally), here is the problem. Compute the reaching definitions for the nodes in the
following flowgraph. You should first fill in GEN and KILL in the table below for each
block, then iteratively solve for the IN and OUT sets. Choose whichever direction to
solve for IN and OUT that you wish (forward or backward).

Block GEN KILL IN 1 OUT 1 IN 2 OUT 2 IN 3 OUT 3

B1

B2

B3

B4

B5

(continue on back of the previous or of this page if needed)

D1: x := 0

D2: y := 1

D3: x := 2

D4: z := 3

D5: x := 17

B1

B2

B4

B5

B3

