
CSE 582 Autumn 2002 Exam Sample Solution

Page 1 of 8

Question 1. (10 points) Regular expressions.
Describe the set of strings that are generated by the each of the following regular expressions.

a) (a | (bc)* d)+

One or more of the string a or the string d preceded by 0 or more pairs of the string bc. (Note
that * has highest precedence, concatenation is next, and | has lowest precedence. If your answer
was wrong because of mistake in precedence levels, you received most of the credit.)

b) ((0 | 1)* (2 | 3)+) | 0011

Either the string 0011, or 0 a string consisting of 0 or more 1’s and 0’s, followed by a string
consisting of 1 or more 2’s and 3’s.

Question 2. (10 points) Draw a deterministic finite automata (DFA) that recognizes strings
generated by (a | (bc)* d)+. You do not need to use the formal algorithms for converting regular
expressions to a NFA then a DFA (although those algorithms might provide some insight into
what’s needed). Just draw a suitable diagram.

b

a, d

c

start state

d

b

 a, d

b

CSE 582 Autumn 2002 Exam Sample Solution

Page 2 of 8

Question 3. (10 points) A new programming language is being designed that includes decimal
numbers with no exponent. A decimal number has a period to separate the integer and fractional
parts of the number and must have at least one digit both before and after the decimal point.
Furthermore, a decimal number must not have any superfluous leading or trailing 0’s. Some
examples of legal decimal numbers are 3.14, 0.01, 17.0, 0.0, 123.00321. Some examples of
illegal decimal numbers are 00.0, .5, 17, 17., 003.01, 0.0012300 (this last example is illegal
because of the trailing 0’s; the 0 before the decimal point is required).

Write a regular expression (or collection of regular expressions) to generate legal decimal
numbers.

(0 | [1-9][0-9]*) . (0 | [0-9]*[1-9])

Question 4. (10 points) Suppose we have the following fragment of a Java program (including
some language operators that are not included in JFlat)

 while (xyzzy >= thing) // repeat until thing is big enough

 { x += y;
thing++; }

List in order the tokens that would be produced by a scanner when reading this input. (Use any
reasonable set of token names; just be sure they are clear and descriptive.)

WHILE LPAREN ID(xyzzy) GEQ ID(thing) RPAREN LBRACE ID(x) PLUSASSIGN
ID(y) SCOLON ID(thing) PLUSPLUS SCOLON RBRACE

Notes: += and ++ are single tokens (principle of longest match)

Identifier tokens must carry some additional information to specify the particular identifier.

Comments, return, and white space are not tokens – the scanner should filter these out.

CSE 582 Autumn 2002 Exam Sample Solution

Page 3 of 8

Question 5. (12 points) The standard programming language grammar for statements is
ambiguous because of the dangling else problem.

 stmt ::= if (expr) stmt | if (expr) stmt else stmt | while (expr) stmt | S

Give an unambiguous grammar that defines all of the above statements and correctly handles the
dangling else problem in the grammar. (Hint: introduce multiple productions for statements and
divide the productions into two categories: those that might end in an if statement with no else
clause – a “short if” – and those that definitely do not.)

The key idea here is to be sure that the statement following the condition and preceding the else
in a full if statement cannot itself be an if statement with no else part.

stmt ::= stmtNoTrailingSubstmt | ifStmt | ifElseStmt | whileStmt
stmtNoTrailingSubstmt ::= S
stmtNoShortIf ::= whileStmtNoShortIf | ifElseStmtNoShortIf | stmtNoTrailingSubstmt
ifStmt ::= if (expr) stmt
ifElseStmt ::= if (expr) stmtNoShortIf else stmt
ifElseStmtNoShortIf ::= if (expr) stmtNoShortIf else stmtNoShortIf
whileStmt ::= while (expr) stmt
whileStmtNoShortIf ::= while (expr) stmtNoShortIf

Notes: Factoring the grammar to change

stmt ::= if (expr) stmt | if (expr) stmt else stmt

into

stmt ::= if (expr) stmt ifTail
ifTail ::= else stmt | ε

might be useful for preparing the grammar for a parser generator, but it doesn’t solve the
dangling else problem. It is still possible to generate two distinct derivations (parse trees) for the
statement if (expr) if (expr) stmt else stmt.

The more subtle problem that many people missed is that the production for a while loop needs to
be handled so it cannot generate a short if before the else part of an if statement. There is a
dangling else problem if that isn’t fixed: if (expr) while (expr) if (expr) stmt else stmt.

CSE 582 Autumn 2002 Exam Sample Solution

Page 4 of 8

Question 6. (20 points) Grammars and LR parsing.

Consider the following grammar

 s ::= expr $
 expr ::= a

 | a subs
 subs ::= [expr]

 | [expr] subs

(In the first production, $ represents the end of file)

a) (3 points) What are the terminals and non-terminals of this grammar?

Terminals:

a [] $ (full credit if you didn’t include $)

Non-terminals:

s expr subs

b) (3 points) Describe in English the set of strings generated by this grammar

Expressions consisting of identifier a followed by 0 or more bracketed expressions, i.e., scalar
and array elements in C/C++/Java.

c) There is no part c.

(continued next page)

CSE 582 Autumn 2002 Exam Sample Solution

Page 5 of 8

Question 6. (Cont) LR parsing.

(Grammar repeated for reference)

 s ::= expr $
 expr ::= a | a subs
 subs ::= [expr] | [expr] subs

d) (12 points) Construct (draw) the LR(0) state machine for this grammar. You do not need to
write out the parser GOTO and ACTION tables, or compute FIRST and FOLLOW sets. Just
draw the state machine. Be sure to show the sets of items in each state.

State diagram added for information – not required in your solution.

state a [] $ s expr subs
1 s2 g4
2 r2, r2,s5 r2 r2 g3
3 r3 r3 r3 r3
4 acc
5 s2 g6
6 s7
7 r4 r4, s5 r4 r4 g8
8 r5 r5 r5 r5

e) (2 points) Is this grammar LR(0)? Why or why not?

No. There are shift/reduce conflicts in states 2 and 7 on input [. (This grammar is SLR(1),
however.)

s::=.expr$ 1
expr::=.a
expr::=.a subs

s::=expr.$ 4

expr::=a. 2
expr::=a.subs
subs::=.[expr]
subs::=.[expr] subs

a

expr

subs::= [expr] subs. 8

subs::=[. expr] 5
subs::=[. expr] subs
expr::=.a
expr::=.a subs

subs::=[expr.] 6
subs::=[expr.] subs

subs::=[expr]. 7
subs::=[expr]. subs
subs::=.[expr]
subs::=.[expr] subs

[

expr::=a subs. 3

subs

a

expr

]

[

subs

CSE 582 Autumn 2002 Exam Sample Solution

Page 6 of 8

Question 7. (18 points) x86 hacking.

Consider the following C main program and function definition:

 int avg(int a, int b) {
 int ans;
 if (a == b) {
 return a/2;
 } else {
 ans = (a + b) / 2;
 return ans;
 }
 }

 void main() {
 int x;
 x = avg(17,42);
 }

(a) (5 points) Draw a picture showing the layouts of the stack frames for methods avg and
main. This should show the stack layout immediately after the prologue code of each function is
executed, just before execution of the first statement of the function body (i.e., after the stack
frame has been allocated). Be sure to show where registers ebp and esp point, and the location
and offsets from ebp of each parameter and local variable.

avg +12 b
 +8 a
 return ip
 old ebp ebp
 -4 ans esp

main return ip
 old ebp ebp
 -4 x esp

CSE 582 Autumn 2002 Exam Sample Solution

Page 7 of 8

Question 7. (cont)

(b) (13 points) Translate both functions avg and main into x86 assembly language. You do not
need to slavishly imitate the code shapes described in class – straightforward x86 code is fine as
long as it is correct, uses the registers properly, and obeys the x86 C language conventions for
stack frame layout, function calls, and so on. It will help us grade your answer if you include the
source code as comments near the corresponding x86 instructions

Your answer had to preserve the semantics of the original program to
receive full credit. No points were deducted in avg if the right
result was returned without storing a value in ans, however, a store to
x should have been included in main.

One subtle point: several people tried to optimize the division
operation by replacing cdq/idiv with a shr (shift right) instruction.
This works fine for positive operands, but it has different rounding
behavior for negative numbers. Shifting truncates towards -∞, while
idiv truncates towards 0. That makes a difference for negative odd
numbers.

avg: push ebp ; function prologue
 mov ebp,esp
 sub esp,4
 mov eax,[ebp+8] ; if (a==b)
 cmp eax,[ebp+12]
 jne L1 ; jump false
 mov eax,[ebp+8] ; move a to eax
 cdq ; divide
 idiv 2 ; result in eax
 jmp L2 ; jump to common code for return
L1: mov eax,[ebp+8] ; else ans = (a+b)/2
 add eax,[ebp+12]
 cdq
 idiv 2
L2: mov esp,ebp ; common code for exit
 pop ebp
 ret

main: push ebp ; prologue for main
 mov ebp,esp
 sub esp,4
 push 42 ; push args
 push 17
 call avg ; call function
 add esp,8 ; pop args
 mov [ebp-4],eax ; store x
 mov esp,ebp ; return
 pop ebp
 ret

CSE 582 Autumn 2002 Exam Sample Solution

Page 8 of 8

Question 8. (10 points) Code Shape

Several languages in the ALGOL family had a loop statement designed strictly for counting
loops. The syntax for a specific example is:

 for var := expr1 to expr2 by expr3 do statement

The semantics of the for statement are to repeatedly execute the statement that is the loop body
with var taking on values starting at expr1, continuing while the value in var is less than or equal
to expr2, and incrementing var by expr3 after each execution of the loop body. All three
expressions (expr1, expr2, and expr3) are evaluated only once before the first iteration of the
loop. If expr1 is initially greater than expr2 then the loop body is not executed. The final by
expr3 clause is optional; if it is omitted, by 1 is assumed instead.

Describe the code shape that could be used to implement this statement on the x86 processor, in
the same style that we’ve used to show code shapes for other programming language constructs.
Include the instructions and labels needed to implement the loop and be sure it is clear where the
compiled code for the various expressions and the loop body would appear. If you introduce any
temporary variables, be sure it is clear where they are stored (where in registers and/or memory).

Two temporaries are needed to store the values of expr2 and expr3 during execution of the loop.
In this example, they are pushed on the stack This solution shows a straightforward code
sequence with the loop test at the top. That would usually be optimized to put the test at the
bottom of the loop There are also optimizations that could be done to avoid loading the control
variable immediately after storing it, etc. These are omitted for clarity.

Note: several answers assumed that particular registers like eax and ecx could be used as
temporaries throughout the loop to hold expr2 or expr3. Given the code shapes we’ve discussed,
that isn’t a reasonable assumption, because code generated for a statement or expression cannot
be assumed to leave these registers alone.

 < code for expr1 >
 mov [ebp+offsetvar],eax ; store in control variable
 < code for expr2 >
 push eax ; push expr2 on stack
 < code for expr3 >
 push eax ; push expr3 on stack (esp+0); expr2 now at esp+4
test: ; top of the loop – test condition here
 mov eax,[ebp+offsetvar] ; load control variable
 cmp eax,[esp+4] ; compare to expr2
 jnle done ; done if greater
 < code for statement >
 mov eax,[ebp+offsetvar] ; load control variable
 add eax,[esp] ; add expr3
 mov [ebp+offsetvar],eax ; store control variable
 jmp test ; iterate
done:
 add esp,8 ; pop temporaries from stack

