q CSE P 501 — Compilers

Data-flow Analysis
Hal Perkins
Autumn 2005

12/6/2005 © 2002-05 Hal Perkins & UW CSE R-1

. Agenda

= Initial example: data-flow analysis for
common subexpression elimination

= Other analysis problems that work in
the same framework

= Credits: Largely based on Keith Cooper’s slides from
Rice University

12/6/2005 © 2002-05 Hal Perkins & UW CSE R-2

3 The Story So Far...

= Redundant expression elimination
= Local Value Numbering
= Superlocal Value Numbering
= Extends VN to EBBs
= SSA-like namespace
= Dominator VN Technique (DVNT)
= All of these propagate along forward edges
= None are global
= In particular, can't handle back edges (loops)

12/6/2005 © 2002-05 Hal Perkins & UW CSE R-3

Dominator Value Numbering
= Most sophisticated
algorithm so far o= b
= Still misses some B ¢ ,—|7
Go =3 + by
r=¢c+dy
/ AW

opportunities
= Can't handle loops

ey =by+ 18 e =ay+17
Sp=ap+ by ty=co+dy
Uy =¢€ +fy u=e +f,
N L
e, = O(eye)
u, = ®(ug,uy)
Vo =3+ Dy
1y = O(rg,ry) Wo=Cp+dy
Yo=ag+ by [T X =+f
7y =Co +dg
12/6/2005 © 2002:05 Hal Perkins & UW CSE R4

3 Available Expressions

= Goal: use data-flow analysis to find
common subexpressions whose range
spans basic blocks

= Idea: calculate available expressions at
beginning of each basic block

= Avoid re-evaluation of an available
expression — use a copy operation

12/6/2005 © 2002-05 Hal Perkins & UW CSE R-5

CSE P 501 Au05

. “Available” and Other Terms

= An expression e is defined at point pin the
CFG if its value is computed at p
= Sometimes called definition site

= An expression e is killed at point p if one of
its operands is defined at p
= Sometimes called 4i// site

= An expression e is available at point p if
every path leading to p contains a prior
definition of e and e is not killed between
that definition and p

12/6/2005 © 2002-05 Hal Perkins & UW CSE R-6

R-1

5 Available Expression Sets

= For each block b, define

= AVAIL(b) — the set of expressions available
on entry to 6

= NKILL(b) — the set of expressions not killed
in b

= DEF(b) — the set of expressions defined in
b and not subsequently killed in 6

12/6/2005 © 2002-05 Hal Perkins & UW CSE R-7

Computing Available

5 Expressions

= AVAIL(D) is the set
AVAIL(b) = mxepreds(b) (DEF(X) |\
(AVAIL(X) N NKILL(x)))

= preds(b) is the set of b’s predecessors in
the control flow graph

= This gives a system of simultaneous
equations — a data-flow problem

12/6/2005 © 2002-05 Hal Perkins & UW CSE R-8

5 Name Space Issues

= In previous value-numbering
algorithms, we used a SSA-like
renaming to keep track of versions

= In global data-flow problems, we use
the original namespace

= The KILL information captures when a
value is no longer available

12/6/2005 © 2002-05 Hal Perkins & UW CSE R-9

GCSE with Available
Expressions

= For each block b, compute DEF(b) and
NKILL(b)

= For each block b, compute AVAIL(b)

= For each block b, value number the
block starting with AVAIL(b)

= Replace expressions in AVAIL(b) with
references to the previously computed
values

12/6/2005 © 2002-05 Hal Perkins & UW CSE R-10

5 Global CSE Replacement

= After analysis and before
transformation, assign a global name to
each expression e by hashing on e

= During transformation step
= At each evaluation of ¢, insert copy
name(e) = e
= At each reference to g, replace e with
name(e)

12/6/2005 © 2002-05 Hal Perkins & UW CSE R-11

CSE P 501 Au05

5 Analysis

= Main problem — inserts extraneous copies at
all definitions and uses of every e that
appears in any AVAIL(b)
= But the extra copies are dead and easy to remove
= Useful copies often coalesce away when registers

and temporaries are assigned

= Common strategy
= Insert copies that might be useful
= Let dead code elimination sort it out later

12/6/2005 © 2002-05 Hal Perkins & UW CSE R-12

R-2

Computing Available

3 Expressions

= Big Picture
= Build control-flow graph
= Calculate initial local data — DEF(b) and
NKILL(b)
= This only needs to be done once

= Iteratively calculate AVAIL(b) by repeatedly
evaluating equations until nothing changes
= Another fixed-point algorithm

12/6/2005 © 2002-05 Hal Perkins & UW CSE R-13

5 Computing DEF and NKILL (1)

= For each block 6 with operations 0;, 0,, ..., 0,

KILLED = &
DEF(b) = @
fori=kto1

assume o;is "x =y + z"

if (y ¢ KILLED and z ¢ KILLED)
add “y + z" to DEF(b)

add x to KILLED

12/6/2005 © 2002-05 Hal Perkins & UW CSE R-14

3 Computing DEF and NKILL (2)

= After computing DEF and KILLED for a
block b,
NKILL(b) = { all expressions }
for each expression e
for each variable v e e
if v e KILLED then
NKILL(b) = NKILL(b) - e

12/6/2005 © 2002-05 Hal Perkins & UW CSE R-15

Computing Available
Expressions

= Once DEF(b) and NKILL(b) are
computed for all blocks b
Worklist = { all blocks b; }
while (Worklist = &)
remove a block b from Worklist
recompute AVAIL(b)
if AVAIL(b) changed
Worklist = Worklist U successors(b)

12/6/2005 © 2002-05 Hal Perkins & UW CSE R-16

Comparing Algorithms
= LVN - Local Value A rﬂn::fbb

Numbering

~
= SVN - Superlocal Value B—— Cr—
Numberi p=c+d q=a+b
umbering r=c+d r=c+d
= DVN — Dominator-based 7
Value Numbering Db+ Elecar17
= GRE - Global Redundancy s=a+b t=c+d
Elimination u=e+f u=e+f
E
v=a+b
w=c+d
x=e+f
G
y=a+b
z=c+d
12/6/2005 © 2002-05 Hal Perkins & UW CSE R-17

5 Comparing Algorithms (2)

= LVN => SVN => DVN form a strict hierarchy
— later algorithms find a superset of previous
information

= Global RE finds a somewhat different set
= Discovers e+f in F (computed in both D and E)

= Misses identical values if they have different
names (e.g., a+b and c+d when a=c and b=d)
= Value Numbering catches this

12/6/2005 © 2002-05 Hal Perkins & UW CSE R-18

CSE P 501 Au05

R-3

5 Data-flow Analysis (1)

= A collection of techniques for compile-
time reasoning about run-time values

= Almost always involves building a graph
= Trivial for basic blocks

= Control-flow graph or derivative for global
problems

= Call graph or derivative for whole-program
problems

12/6/2005 © 2002-05 Hal Perkins & UW CSE R-19

5 Data-flow Analysis (2)

= Usually formulated as a set of
simultaneous equations (data-flow
problem)
= Sets attached to nodes and edges
= Need a lattice (or semilattice) to describe
values

= In particular, has an appropriate operator to
combine values and an appropriate “bottom” or
minimal value

12/6/2005 © 2002-05 Hal Perkins & UW CSE R-20

. Data-flow Analysis (3)

= Desired solution is usually a meet over
all paths (MOP) solution
= “What is true on every path from entry”
= “What can happen on any path from entry”
= Usually relates to safety of optimization

12/6/2005 © 2002-05 Hal Perkins & UW CSE R-21

Data-flow Analysis (4)

= Limitations
= Precision — “up to symbolic execution”
= Assumes all paths taken
= Sometimes cannot afford to compute full solution

= Arrays — classic analysis treats each array as a
single fact

= Pointers — difficult, expensive to analyze
= Imprecision rapidly adds up
= Summary: for scalar values we can quickly
solve simple problems

12/6/2005 © 2002-05 Hal Perkins & UW CSE R-22

5 Scope of Analysis

= Larger context (EBBs, regions, global,
interprocedural) sometimes helps
= More opportunities for optimizations

= But not always
= Introduces uncertainties about flow of control
= Usually only allows weaker analysis

= Sometimes has unwanted side effects
= Can create additional pressure on registers, for example

12/6/2005 © 2002-05 Hal Perkins & UW CSE R-23

CSE P 501 Au05

5 Some Problems (1)

= Merge points often cause loss of
information
= Sometimes worthwhile to clone the code at
the merge points to yield two straight-line
sequences

12/6/2005 © 2002-05 Hal Perkins & UW CSE R-24

R-4

Some Problems (2)

= Procedure/function/method calls are problematic
= Have to assume anything could happen, which kills local
assumptions
= Calling sequence and register conventions are often more
general than needed
= One technique — inline substitution
= Allows caller and called code to be analyzed together; more
precise information
= Can eliminate overhead of function call, parameter passing,
register save/restore
= But... Creates dedpendency in compiled code on specific
version of procedure definition — need to avoid trouble
(inconsistencies) if (when?) the definition changes.

12/6/2005 © 2002-05 Hal Perkins & UW CSE R-25

5 Other Data-Flow Problems

= The basic data-flow analysis framework
can be applied to many other problems
beyond redundant expressions

= Different kinds of analysis enable
different optimizations

12/6/2005 © 2002-05 Hal Perkins & UW CSE R-26

Characterizing Data-flow
Analysis

= All of these involve sets of facts about each
basic block b
= IN(b) — facts true on entry to b
= OUT(b) — facts true on exit from b
= GEN(b) — facts created and not killed in b
» KILL(b) — facts killed in b
= These are related by the equation
OUT(b) = GEN(b) U (IN(b) — KILL(b)
= Solve this iteratively for all blocks

= Sometimes information propagates forward;
sometimes backwart

12/6/2005 © 2002-05 Hal Perkins & UW CSE R-27

Efficiency of Data-flow

. Analysis

= The algorithms eventually terminate,
but the expected time needed can be
reduced by picking a good order to visit
nodes in the CFG
= Forward problems — reverse postorder
= Backward problems - postorder

12/6/2005 © 2002-05 Hal Perkins & UW CSE R-28

Example:Live Variable Analysis

= A variable vis /ive at point p iff there is any
path from pto a use of valong which vis not
redefined
= Uses
= Register allocation — only live variables need a
register (or temporary)
= Eliminating useless stores
= Detecting uses of uninitialized variables
= Improve SSA construction — only need ®-function
for variables that are live in a block

12/6/2005 © 2002-05 Hal Perkins & UW CSE R-29

. Equations for Live Variables

= Sets
= USED(b) — variables used in b before being
defined in b

= NOTDEF(b) — variables not defined in b
= LIVE(b) — variables live on exit from b
= Equation
LIVE(D) = Us sucery USED(S) L
(LIVE(s) » NOTDEF(s))

12/6/2005 © 2002-05 Hal Perkins & UW CSE R-30

CSE P 501 Au05

R-5

Example: Available

3 Expressions

= This is the analysis we did earlier to
eliminate redundant expression
evaluation (i.e., compute AVAIL(b))

12/6/2005 © 2002-05 Hal Perkins & UW CSE R-31

5 Example: Reaching Definitions

= A definition ¢ of some variable v
reaches operation / iff / reads the
value of v and there is a path from ¢
to / that does not define v

= Uses

= Find all of the possible definition points for
a variable in an expression

12/6/2005 © 2002-05 Hal Perkins & UW CSE R-32

Equations for Reaching

3 Definitions

= Sets

= DEFOUT(b) — set of definitions in b that reach the
end of b (i.e., not subsequently redefined in b)

= SURVIVED(b) — set of all definitions not obscured
by a definition in b
» REACHES(b) — set of definitions that reach b
= Equation
REACHES(b) = Uppreas(sy DEFOUT(p) LU
(REACHES(p) m SURVIVED(p))

12/6/2005 © 2002-05 Hal Perkins & UW CSE R-33

Example: Very Busy

. Expressions

= An expression eis considered very busy
at some point pif e is evaluated and
used along every path that leaves p,
and evaluating e at pwould produce
the same result as evaluating it at the
original locations

= Uses

= Code hoisting — move eto p (reduces code
size; no effect on execution time)

12/6/2005 © 2002-05 Hal Perkins & UW CSE R-34

Equations for Very Busy

3 Expressions

= Sets

= USED(b) — expressions used in b before they are
killed

= KILLED(b) — expressions redefined in b before
they are used

= VERYBUSY(b) — expressions very busy on exit
fromb
= Equation
VERYBUSY(b) = Mg gycey USED(S) U
(VERYBUSY(s) - KILLED(s))

12/6/2005 © 2002-05 Hal Perkins & UW CSE R-35

5 Summary

= Dataflow analysis gives a framework for
finding global information

= Key to enabling most optimizing
transformations

12/6/2005 © 2002-05 Hal Perkins & UW CSE R-36

CSE P 501 Au05

R-6

