
CSE P 501 Au05 Q-1

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-1

CSE P 501 – Compilers

Introduction to Optimization
Hal Perkins

Autumn 2005

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-2

Agenda

Optimization
Goals
Scope: local, superlocal, regional, global,
interprocedural

Control flow graphs
Value numbering
Dominators

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-3

Code Improvement – How?

Pick a better algorithm(!)
Use machine resources effectively

Instruction selection & scheduling
Register allocation

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-4

Code Improvement (2)

Local optimizations – basic blocks
Algebraic simplifications
Constant folding
Common subexpression elimination (i.e.,
redundancy elimination)
Dead code elimination
Specialize computation based on context

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-5

Code Improvement (3)

Global optimizations
Code motion
Moving invariant computations out of loops
Strength reduction (replace multiplications
by repeated additions, for example)
Global common subexpression elimination
Global register allocation

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-6

“Optimization”

None of these improvements are truly
“optimal”

Hard problems
Proofs of optimality assume artificial
restrictions

Best we can do is to improve things

CSE P 501 Au05 Q-2

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-7

Example: A[i,j]

Without any surrounding context, need to
generate code to calculate

address(A)
+ (i-low1(A)) * (high2(A)-low2(a)+1) * size(A)
+ (j-low2(A)) * size(A)

lowi and highi are subscript bounds in dimension i
address(A) is the runtime address of first element
of A

… And we really should be checking that i, j
are in bounds

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-8

Some Optimizations for A[i,j]

With more context, we can do better
Examples

If A is local, with known bounds, much of the
computation can be done at compile time
If A[i,j] is in a loop where i and j change
systematically, we probably can replace
multiplications with additions each time around
the loop to reference successive rows/columns

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-9

Optimization Phase

Goal
Discover, at compile time, information
about the runtime behavior of the
program, and use that information to
improve the generated code

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-10

Running Example:
Redundancy Elimination

An expression x+y is redundant at a program
point iff, along every path from the
procedure’s entry, it has been evaluated and
its constituent subexpressions (x & y) have
not been redefined
If the compiler can prove the expression is
redundant

Can store the result of the earlier evaluation
Can replace the redundant computation with a
reference to the earlier (stored) result

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-11

Common Problems in Code
Improvement

This strategy is typical of most compiler
optimizations

First, need to discover opportunities
through program analysis
Then, need to modify the IR to take
advantage of the opportunities

Historically, goal usually was to decrease
execution time
Other possibilities: reduce space, power, …

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-12

Issues (1)

Safety – transformation must not
change program meaning

Must generate correct results
Can’t generate spurious errors
Optimizations must be conservative
Large part of analysis goes towards
proving safety

CSE P 501 Au05 Q-3

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-13

Issues (2)

Profitibility
If a transformation is possible, is it
profitable?
Example: loop unrolling

Can increase amount of work done on each
iteration, i.e., reduce loop overhead
Can eliminate duplicate operations done on
separate iterations

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-14

Issues (3)

Downside risks
Even if a transformation is generally
worthwhile, need to factor in potential
problems
Sample issues

Transformation might need more temporaries,
putting additional pressure on registers
Increased code size could cause cache misses,
or in bad cases, increase page working set

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-15

Value Numbering

Technique for eliminating redundant
expressions: assign an identifying number
VN(n) to each expression

VN(x+y)=VN(j) if x+y and j have the same value
Use hashing over value numbers for effeciency

Old idea (Balke 1968, Ershov 1954)
Invented for low-level, linear IRs
Equivalent methods exist for tree IRs, e.g., build a
DAG

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-16

Uses of Value Numbers

Improve the code
Replace redundant expressions
Simplify algebraic identities
Discover, fold, and propagate constant
valued expressions

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-17

Local Value Numbering

Algorithm
For each operation o = <op, o1,o2> in the block

1. Get value numbers for operands from hash lookup
2. Hash <op, VN(o1), VN(o2)> to get a value number for o

(If op is commutative, sort VN(o1), VN(o2) first)
3. If o already has a value number, replace o with a

reference to the value
4. If o1 and o2 are constant, evaluate o at compile time

and replace with an immediate load

If hashing behaves well, this runs in linear
time

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-18

Example

Code Rewritten
a = x + y
b = x + y
a = 17
c = x + y

CSE P 501 Au05 Q-4

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-19

Bug in Simple Example

If we use the original names, we get in
trouble when a name is reused
Solutions

Be clever about which copy of the value to
use (e.g., use c=b in last statement)
Create an extra temporary
Rename around it (best!)

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-20

Renaming

Idea: give each value a unique name
ai

j means ith definition of a with VN = j
Somewhat complex notation, but
meaning is clear
This is the idea behind SSA (Static
Single Assignment) IR

Popular modern IR – exposes many
opportunities for optimizations

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-21

Example Revisited

Code Rewritten
a = x + y
b = x + y
a = 17
c = x + y

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-22

Simple Extensions to Value
Numbering

Constant folding
Add a bit that records when a value is constant
Evaluate constant values at compile time
Replace op with load immediate

Algebraic identities: x+0, x*1, x-x, …
Many special cases

Switch on op to narrow down checks needed
Replace result with input VN

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-23

Larger Scopes

This algorithm works on straight-line
blocks of code (basic blocks)

Best possible results for single basic blocks
Loses all information when control flows to
another block

To go further we need to represent
multiple blocks of code and the control
flow between them

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-24

Basic Blocks

Definition: A basic block is a maximal
length sequence of straight-line code
Properties

Statements are executed sequentially
If any statement executes, they all do

(baring exceptions)

In a linear IR, the first statement of a
basic block is often called the leader

CSE P 501 Au05 Q-5

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-25

Control Flow Graph (CFG)

Nodes: basic blocks
Possible representations: linear 3-address
code, expression-level AST, DAG

Edges: include a directed edge from n1
to n2 if there is any possible way for
control to transfer from block n1 to n2
during execution

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-26

Constructing Control Flow
Graphs from Linear IRs

Algorithm
Pass 1: Identify basic block leaders with a linear
scan of the IR
Pass 2: Identify operations that end a block and
add appropriate edges to the CFG to all possible
successors
See your favorite compiler book for details

For convenience, ensure that every block
ends with conditional or unconditional jump

Code generator can pick the most convenient “fall-
through” case later and eliminate unneeded jumps

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-27

Scope of Optimizations

Optimization algorithms can work on units as
small as a basic block or as large as a whole
program
Local information is generally more precise
and can lead to locally optimal results
Global information is less precise (lose
information at join points in the graph), but
exposes opportunities for improvements
across basic blocks

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-28

Optimization Categories (1)

Local methods
Usually confined to basic blocks
Simplest to analyze and understand
Most precise information

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-29

Optimization Categories (2)

Superlocal methods
Operate over Extended Basic Blocks (EBBs)

An EBB is a set of blocks b1, b2, …, bn where b1 has
multiple predecessors and each of the remaining blocks
bi (2≤i≤n) have only bi-1 as its unique predecessor
The EBB is entered only at b1, but may have multiple
exits
A single block bi can be the head of multiple EBBs (these
EBBs form a tree rooted at bi)

Use information discovered in earlier blocks to
improve code in successors

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-30

Optimization Categories (3)

Regional methods
Operate over scopes larger than an EBB
but smaller than an entire procedure/
function/method
Typical example: loop body
Difference from superlocal methods is that
there may be merge points in the graph
(i.e., a block with two or more
predecessors)

CSE P 501 Au05 Q-6

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-31

Optimization Categories (4)

Global methods
Operate over entire procedures
Sometimes called intraprocedural methods
Motivation is that local optimizations sometimes
have bad consequences in larger context
Procedure/method/function is a natural unit for
analysis, separate compilation, etc.
Almost always need global data-flow analysis
information for these

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-32

Optimization Categories (5)

Whole-program methods
Operate over more than one procedure
Sometimes called interprocedural methods
Challenges: name scoping and parameter binding
issues at procedure boundaries
Classic examples: inline method substitution,
interprocedural constant propagation
Fairly common in aggressive JIT compilers and
optimizing compilers for object-oriented languages

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-33

Value Numbering Revisited

Local Value
Numbering

1 block at a time
Strong local results
No cross-block
effects

Missed opportunities

m = a + b
n = a + b

A

p = c + d
r = c + d

B
q = a + b
r = c + d

C

e = b + 18
s = a + b
u = e + f

D
e = a + 17
t = c + d
u = e + f

E

v = a + b
w = c + d
x = e + f

F

y = a + b
z = c + d

G

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-34

Superlocal Value Numbering
Idea: apply local
method to EBBs

{A,B}, {A,C,D}, {A,C,E}
Final info from A is
initial info for B, C; final
info from C is initial for
D, E
Gets reuse from
ancestors
Avoid reanalyzing A, C
Doesn’t help with F, G

m = a + b
n = a + b

A

p = c + d
r = c + d

B
q = a + b
r = c + d

C

e = b + 18
s = a + b
u = e + f

D
e = a + 17
t = c + d
u = e + f

E

v = a + b
w = c + d
x = e + f

F

y = a + b
z = c + d

G

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-35

SSA Name Space (from before)

Code Rewritten
a0

3 = x0
1 + y0

2 a0
3 = x0

1 + y0
2

b0
3 = x0

1 + y0
2 b0

3 = a0
3

a1
4 = 17 a1

4 = 17
c0

3 = x0
1 + y0

2 c0
3 = a0

3

Unique name for each definition
Name VN
a0

3 is available to assign to c0
3

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-36

SSA Name Space

Two Principles
Each name is defined by exactly one operation
Each operand refers to exactly one definition

Need to deal with merge points
Add Φ functions at merge points to reconcile
names
Use subscripts on variable names for uniqueness

CSE P 501 Au05 Q-7

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-37

Superlocal Value Numbering
with All Bells & Whistles

Finds more
redundancies
Little extra cost
Still does nothing for
F and G

m0 = a0 + b0
n0 = a0 + b0

A

p0 = c0 + d0
r0 = c0 + d0

B
q0 = a0 + b0
r1 = c0 + d0

C

e0 = b0 + 18
s0 = a0 + b0
u0 = e0 + f0

D
e1 = a0 + 17
t0 = c0 + d0
u1 = e1 + f0

E

e2 = Φ(e0,e1)
u2 = Φ(u0,u1)
v0 = a0 + b0
w0 = c0 + d0
x0 = e2 + f0

F

r2 = Φ(r0,r1)
y0 = a0 + b0
z0 = c0 + d0

G

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-38

Larger Scopes
Still have not helped F
and G
Problem: multiple
predecessors
Must decide what facts
hold in F and in G

For G, combine B & F?
Merging states is
expensive
Fall back on what we
know

m0 = a0 + b0
n0 = a0 + b0

A

p0 = c0 + d0
r0 = c0 + d0

B
q0 = a0 + b0
r1 = c0 + d0

C

e0 = b0 + 18
s0 = a0 + b0
u0 = e0 + f0

D
e1 = a0 + 17
t0 = c0 + d0
u1 = e1 + f0

E

e2 = Φ(e0,e1)
u2 = Φ(u0,u1)
v0 = a0 + b0
w0 = c0 + d0
x0 = e2 + f0

F

r2 = Φ(r0,r1)
y0 = a0 + b0
z0 = c0 + d0

G

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-39

Dominators

Definition
x dominates y iff every path from the entry of the
control-flow graph to y includes x

By definition, x dominates x
Associate a Dom set with each node

| Dom(x) | ≥ 1

Many uses in analysis and transformation
Finding loops, building SSA form, code motion

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-40

Immediate Dominators

For any node x, there is a y in Dom(x)
closest to x
This is the immediate dominator of x

Notation: IDom(x)

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-41

Dominator Sets
m0 = a0 + b0
n0 = a0 + b0

A

p0 = c0 + d0
r0 = c0 + d0

B
q0 = a0 + b0
r1 = c0 + d0

C

e0 = b0 + 18
s0 = a0 + b0
u0 = e0 + f0

D
e1 = a0 + 17
t0 = c0 + d0
u1 = e1 + f0

E

e2 = Φ(e0,e1)
u2 = Φ(u0,u1)
v0 = a0 + b0
w0 = c0 + d0
x0 = e2 + f0

F

r2 = Φ(r0,r1)
y0 = a0 + b0
z0 = c0 + d0

G

Block Dom IDom

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-42

Dominator Value Numbering
m0 = a0 + b0
n0 = a0 + b0

A

p0 = c0 + d0
r0 = c0 + d0

B
q0 = a0 + b0
r1 = c0 + d0

C

e0 = b0 + 18
s0 = a0 + b0
u0 = e0 + f0

D
e1 = a0 + 17
t0 = c0 + d0
u1 = e1 + f0

E

e2 = Φ(e0,e1)
u2 = Φ(u0,u1)
v0 = a0 + b0
w0 = c0 + d0
x0 = e2 + f0

F

r2 = Φ(r0,r1)
y0 = a0 + b0
z0 = c0 + d0

G

Still looking for a way
to handle F and G
Idea: Use info from
IDom(x) to start
analysis of x

Use C for F and
A for G

Dominator VN
Technique (DVNT)

CSE P 501 Au05 Q-8

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-43

DVNT algorithm

Use superlocal algorithm on extended basic
blocks

Use scoped hash tables & SSA name space as
before

Start each node with table from its IDOM
No values flow along back edges (i.e., loops)
Constant folding, algebraic identities as
before

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-44

Dominator Value Numbering
m0 = a0 + b0
n0 = a0 + b0

A

p0 = c0 + d0
r0 = c0 + d0

B
q0 = a0 + b0
r1 = c0 + d0

C

e0 = b0 + 18
s0 = a0 + b0
u0 = e0 + f0

D
e1 = a0 + 17
t0 = c0 + d0
u1 = e1 + f0

E

e2 = Φ(e0,e1)
u2 = Φ(u0,u1)
v0 = a0 + b0
w0 = c0 + d0
x0 = e2 + f0

F

r2 = Φ(r0,r1)
y0 = a0 + b0
z0 = c0 + d0

G

Advantages
Finds more redundancy
Little extra cost

Shortcomings
Misses some
opportunities (common
calculations in ancestors
that are not IDOMs)
Doesn’t handle loops or
other back edges

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-45

The Story So Far…

Local algorithm
Superlocal extension

Some local methods extend cleanly to
superlocal scopes

Dominator VN Technique (DVNT)
All of these propagate along forward
edges
None are global

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-46

Coming Attractions

Data-flow analysis
Provides global solution to redundant expression
analysis

Catches some things missed by DVNT, but misses some
others

Generalizes to many other analysis problems, both
forward and backward

Transformations
A catalog of some of the things a compiler can do
with the analysis information

