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Agenda

Optimization
Goals
Scope: local, superlocal, regional, global, 
interprocedural

Control flow graphs
Value numbering
Dominators
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Code Improvement – How?

Pick a better algorithm(!)
Use machine resources effectively

Instruction selection & scheduling
Register allocation
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Code Improvement (2)

Local optimizations – basic blocks
Algebraic simplifications
Constant folding
Common subexpression elimination (i.e., 
redundancy elimination)
Dead code elimination
Specialize computation based on context
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Code Improvement (3)

Global optimizations
Code motion
Moving invariant computations out of loops
Strength reduction (replace multiplications 
by repeated additions, for example)
Global common subexpression elimination
Global register allocation
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“Optimization”

None of these improvements are truly 
“optimal”

Hard problems
Proofs of optimality assume artificial 
restrictions

Best we can do is to improve things
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Example: A[i,j]

Without any surrounding context, need to 
generate code to calculate

address(A)
+ (i-low1(A)) * (high2(A)-low2(a)+1) * size(A)
+ (j-low2(A)) * size(A)

lowi and highi are subscript bounds in dimension i
address(A) is the runtime address of first element 
of A

… And we really should be checking that i, j 
are in bounds
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Some Optimizations for A[i,j]

With more context, we can do better
Examples

If A is local, with known bounds, much of the 
computation can be done at compile time
If A[i,j] is in a loop where i and j change 
systematically, we probably can replace 
multiplications with additions each time around 
the loop to reference successive rows/columns
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Optimization Phase

Goal
Discover, at compile time, information 
about the runtime behavior of the 
program, and use that information to 
improve the generated code 
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Running Example: 
Redundancy Elimination

An expression x+y is redundant at a program 
point iff, along every path from the 
procedure’s entry, it has been evaluated and 
its constituent subexpressions (x & y) have 
not been redefined
If the compiler can prove the expression is 
redundant

Can store the result of the earlier evaluation
Can replace the redundant computation with a 
reference to the earlier (stored) result
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Common Problems in Code 
Improvement

This strategy is typical of most compiler 
optimizations

First, need to discover opportunities 
through program analysis
Then, need to modify the IR to take 
advantage of the opportunities

Historically, goal usually was to decrease 
execution time
Other possibilities: reduce space, power, …
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Issues (1)

Safety – transformation must not 
change program meaning

Must generate correct results
Can’t generate spurious errors
Optimizations must be conservative
Large part of analysis goes towards 
proving safety
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Issues (2)

Profitibility
If a transformation is possible, is it 
profitable?
Example: loop unrolling

Can increase amount of work done on each 
iteration, i.e., reduce loop overhead
Can eliminate duplicate operations done on 
separate iterations
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Issues (3)

Downside risks
Even if a transformation is generally 
worthwhile, need to factor in potential 
problems
Sample issues

Transformation might need more temporaries, 
putting additional pressure on registers
Increased code size could cause cache misses, 
or in bad cases, increase page working set
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Value Numbering

Technique for eliminating redundant 
expressions: assign an identifying number 
VN(n) to each expression

VN(x+y)=VN(j) if x+y and j have the same value
Use hashing over value numbers for effeciency

Old idea (Balke 1968, Ershov 1954)
Invented for low-level, linear IRs
Equivalent methods exist for tree IRs, e.g., build a 
DAG
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Uses of Value Numbers

Improve the code
Replace redundant expressions
Simplify algebraic identities
Discover, fold, and propagate constant 
valued expressions
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Local Value Numbering

Algorithm
For each operation o = <op, o1,o2> in the block

1. Get value numbers for operands from hash lookup
2. Hash <op, VN(o1), VN(o2)> to get a value number for o

(If op is commutative, sort VN(o1), VN(o2) first)
3. If o already has a value number, replace o with a 

reference to the value
4. If o1 and o2 are constant, evaluate o at compile time 

and replace with an immediate load

If hashing behaves well, this runs in linear 
time
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Example

Code Rewritten
a   =  x   +   y
b   =  x   +   y
a   =  17
c   =  x   +   y
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Bug in Simple Example

If we use the original names, we get in 
trouble when a name is reused
Solutions

Be clever about which copy of the value to 
use (e.g., use c=b in last statement)
Create an extra temporary
Rename around it (best!)
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Renaming

Idea: give each value a unique name
ai

j means ith definition of a with VN = j
Somewhat complex notation, but 
meaning is clear
This is the idea behind SSA (Static 
Single Assignment) IR

Popular modern IR – exposes many 
opportunities for optimizations
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Example Revisited

Code Rewritten
a   =  x   +   y
b   =  x   +   y
a   =  17
c   =  x   +   y
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Simple Extensions to Value 
Numbering

Constant folding
Add a bit that records when a value is constant
Evaluate constant values at compile time
Replace op with load immediate

Algebraic identities: x+0, x*1, x-x, …
Many special cases

Switch on op to narrow down checks needed
Replace result with input VN
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Larger Scopes

This algorithm works on straight-line 
blocks of code (basic blocks)

Best possible results for single basic blocks
Loses all information when control flows to 
another block

To go further we need to represent 
multiple blocks of code and the control 
flow between them
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Basic Blocks

Definition: A basic block is a maximal 
length sequence of straight-line code
Properties

Statements are executed sequentially
If any statement executes, they all do

(baring exceptions)

In a linear IR, the first statement of a 
basic block is often called the leader
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Control Flow Graph (CFG)

Nodes: basic blocks
Possible representations: linear 3-address 
code, expression-level AST, DAG

Edges: include a directed edge from n1 
to n2 if there is any possible way for 
control to transfer from block n1 to n2 
during execution
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Constructing Control Flow 
Graphs from Linear IRs

Algorithm
Pass 1: Identify basic block leaders with a linear 
scan of the IR
Pass 2: Identify operations that end a block and 
add appropriate edges to the CFG to all possible 
successors
See your favorite compiler book for details

For convenience, ensure that every block 
ends with conditional or unconditional jump

Code generator can pick the most convenient “fall-
through” case later and eliminate unneeded jumps
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Scope of Optimizations

Optimization algorithms can work on units as 
small as a basic block or as large as a whole 
program
Local information is generally more precise 
and can lead to locally optimal results
Global information is less precise (lose 
information at join points in the graph), but 
exposes opportunities for improvements 
across basic blocks
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Optimization Categories (1)

Local methods
Usually confined to basic blocks
Simplest to analyze and understand
Most precise information
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Optimization Categories (2)

Superlocal methods
Operate over Extended Basic Blocks (EBBs)

An EBB is a set of blocks b1, b2, …, bn where b1 has 
multiple predecessors and each of the remaining blocks 
bi (2≤i≤n) have only bi-1 as its unique predecessor
The EBB is entered only at b1, but may have multiple 
exits
A single block bi can be the head of multiple EBBs (these 
EBBs form a tree rooted at bi)

Use information discovered in earlier blocks to 
improve code in successors

11/29/2005 © 2002-05 Hal Perkins & UW CSE Q-30

Optimization Categories (3)

Regional methods
Operate over scopes larger than an EBB 
but smaller than an entire procedure/ 
function/method
Typical example: loop body
Difference from superlocal methods is that 
there may be merge points in the graph 
(i.e., a block with two or more 
predecessors)
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Optimization Categories (4)

Global methods
Operate over entire procedures
Sometimes called intraprocedural methods
Motivation is that local optimizations sometimes 
have bad consequences in larger context
Procedure/method/function is a natural unit for 
analysis, separate compilation, etc.
Almost always need global data-flow analysis 
information for these
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Optimization Categories (5)

Whole-program methods
Operate over more than one procedure
Sometimes called interprocedural methods
Challenges: name scoping and parameter binding 
issues at procedure boundaries
Classic examples: inline method substitution, 
interprocedural constant propagation
Fairly common in aggressive JIT compilers and 
optimizing compilers for object-oriented languages
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Value Numbering Revisited

Local Value 
Numbering

1 block at a time
Strong local results
No cross-block 
effects

Missed opportunities

m = a + b
n = a + b

A

p = c + d
r = c + d

B
q = a + b
r = c + d

C

e = b + 18
s = a + b
u = e + f

D
e = a + 17
t = c + d
u = e + f

E

v = a + b
w = c + d
x = e + f

F

y = a + b
z = c + d

G
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Superlocal Value Numbering
Idea: apply local 
method to EBBs

{A,B}, {A,C,D}, {A,C,E}
Final info from A is 
initial info for B, C; final 
info from C is initial for 
D, E
Gets reuse from 
ancestors
Avoid reanalyzing A, C
Doesn’t help with F, G

m = a + b
n = a + b

A

p = c + d
r = c + d

B
q = a + b
r = c + d

C

e = b + 18
s = a + b
u = e + f

D
e = a + 17
t = c + d
u = e + f

E

v = a + b
w = c + d
x = e + f

F

y = a + b
z = c + d

G
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SSA Name Space (from before)

Code Rewritten
a0

3 = x0
1 + y0

2 a0
3 = x0

1 + y0
2

b0
3 = x0

1 + y0
2 b0

3 = a0
3

a1
4 = 17 a1

4 = 17
c0

3 = x0
1 + y0

2 c0
3 = a0

3

Unique name for each definition
Name VN
a0

3 is available to assign to c0
3 
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SSA Name Space

Two Principles
Each name is defined by exactly one operation
Each operand refers to exactly one definition

Need to deal with merge points
Add Φ functions at merge points to reconcile 
names
Use subscripts on variable names for uniqueness
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Superlocal Value Numbering 
with All Bells & Whistles

Finds more 
redundancies
Little extra cost
Still does nothing for 
F and G

m0 = a0 + b0
n0 = a0 + b0

A

p0 = c0 + d0
r0 = c0 + d0

B
q0 = a0 + b0
r1 = c0 + d0

C

e0 = b0 + 18
s0 = a0 + b0
u0 = e0 + f0

D
e1 = a0 + 17
t0 = c0 + d0
u1 = e1 + f0

E

e2 = Φ(e0,e1)
u2 = Φ(u0,u1)
v0 = a0 + b0
w0 = c0 + d0
x0 = e2 + f0

F

r2 = Φ(r0,r1)
y0 = a0 + b0
z0 = c0 + d0

G
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Larger Scopes
Still have not helped F 
and G
Problem: multiple 
predecessors
Must decide what facts 
hold in F and in G

For G, combine B & F?
Merging states is 
expensive
Fall back on what we 
know

m0 = a0 + b0
n0 = a0 + b0

A

p0 = c0 + d0
r0 = c0 + d0

B
q0 = a0 + b0
r1 = c0 + d0

C

e0 = b0 + 18
s0 = a0 + b0
u0 = e0 + f0

D
e1 = a0 + 17
t0 = c0 + d0
u1 = e1 + f0

E

e2 = Φ(e0,e1)
u2 = Φ(u0,u1)
v0 = a0 + b0
w0 = c0 + d0
x0 = e2 + f0

F

r2 = Φ(r0,r1)
y0 = a0 + b0
z0 = c0 + d0

G
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Dominators

Definition
x dominates y iff every path from the entry of the 
control-flow graph to y includes x

By definition, x dominates x
Associate a Dom set with each node

| Dom(x) | ≥ 1

Many uses in analysis and transformation
Finding loops, building SSA form, code motion
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Immediate Dominators

For any node x, there is a y in Dom(x) 
closest to x
This is the immediate dominator of x 

Notation: IDom(x)
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Dominator Sets
m0 = a0 + b0
n0 = a0 + b0

A

p0 = c0 + d0
r0 = c0 + d0

B
q0 = a0 + b0
r1 = c0 + d0

C

e0 = b0 + 18
s0 = a0 + b0
u0 = e0 + f0

D
e1 = a0 + 17
t0 = c0 + d0
u1 = e1 + f0

E

e2 = Φ(e0,e1)
u2 = Φ(u0,u1)
v0 = a0 + b0
w0 = c0 + d0
x0 = e2 + f0

F

r2 = Φ(r0,r1)
y0 = a0 + b0
z0 = c0 + d0

G

Block  Dom  IDom
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Dominator Value Numbering
m0 = a0 + b0
n0 = a0 + b0

A

p0 = c0 + d0
r0 = c0 + d0

B
q0 = a0 + b0
r1 = c0 + d0

C

e0 = b0 + 18
s0 = a0 + b0
u0 = e0 + f0

D
e1 = a0 + 17
t0 = c0 + d0
u1 = e1 + f0

E

e2 = Φ(e0,e1)
u2 = Φ(u0,u1)
v0 = a0 + b0
w0 = c0 + d0
x0 = e2 + f0

F

r2 = Φ(r0,r1)
y0 = a0 + b0
z0 = c0 + d0

G

Still looking for a way 
to handle F and G
Idea: Use info from 
IDom(x) to start 
analysis of x

Use C for F and 
A for G

Dominator VN
Technique (DVNT)
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DVNT algorithm

Use superlocal algorithm on extended basic 
blocks

Use scoped hash tables & SSA name space as 
before

Start each node with table from its IDOM
No values flow along back edges (i.e., loops)
Constant folding, algebraic identities as 
before
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Dominator Value Numbering
m0 = a0 + b0
n0 = a0 + b0

A

p0 = c0 + d0
r0 = c0 + d0

B
q0 = a0 + b0
r1 = c0 + d0

C

e0 = b0 + 18
s0 = a0 + b0
u0 = e0 + f0

D
e1 = a0 + 17
t0 = c0 + d0
u1 = e1 + f0

E

e2 = Φ(e0,e1)
u2 = Φ(u0,u1)
v0 = a0 + b0
w0 = c0 + d0
x0 = e2 + f0

F

r2 = Φ(r0,r1)
y0 = a0 + b0
z0 = c0 + d0

G

Advantages
Finds more redundancy
Little extra cost

Shortcomings
Misses some 
opportunities (common 
calculations in ancestors 
that are not IDOMs)
Doesn’t handle loops or 
other back edges
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The Story So Far…

Local algorithm
Superlocal extension

Some local methods extend cleanly to 
superlocal scopes

Dominator VN Technique (DVNT)
All of these propagate along forward 
edges
None are global
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Coming Attractions

Data-flow analysis
Provides global solution to redundant expression 
analysis

Catches some things missed by DVNT, but misses some 
others

Generalizes to many other analysis problems, both 
forward and backward

Transformations
A catalog of some of the things a compiler can do 
with the analysis information


