
CSE P 501 Au05 O-1

11/22/2005 © 2002-05 Hal Perkins & UW CSE O-1

CSE P 501 – Compilers

Instruction Scheduling
Hal Perkins

Autumn 2005

11/22/2005 © 2002-05 Hal Perkins & UW CSE O-2

Agenda

Instruction scheduling issues – latencies
List scheduling

Credits: Adapted from slides by Keith Cooper, Rice University

11/22/2005 © 2002-05 Hal Perkins & UW CSE O-3

Issues
Many operations have non-zero latencies
Modern machines can issue several operations per
cycle
Loads & Stores may or may not block
∴ may be slots after load/store for other useful work

Branch costs vary
Branches on modern processors typically have delay
slots (or on x86, delay slots in underlying execution
engine – try to generate code that doesn’t get in the
way of exploiting these)
GOAL: Scheduler should reorder instructions to hide
latencies and take advantage of delay slots

11/22/2005 © 2002-05 Hal Perkins & UW CSE O-4

Some Idealized Latencies

0 TO 8BRANCH

1SHIFT

2MULT

1ADD

3STORE

3LOAD

CyclesOperation

11/22/2005 © 2002-05 Hal Perkins & UW CSE O-5

Example: w = w*2*x*y*z;
Simple schedule
1 LOAD r1 <- w
4 ADD r1 <- r1,r1
5 LOAD r2 <- x
8 MULT r1 <- r1,r2
9 LOAD r2 <- y
12 MULT r1 <- r1,r2
13 LOAD r2 <- z
16 MULT r1 <- r1,r2
18 STORE w <- r1
21 r1 free

2 registers, 20 cycles

Loads early
1 LOAD r1 <- w
2 LOAD r2 <- x
3 LOAD r3 <- y
4 ADD r1 <- r1,r1
5 MULT r1 <- r1,r2
6 LOAD r2 <- z
7 MULT r1 <- r1,r3
9 MULT r1 <- r1,r2
11 STORE w <- r1
14 r1 is free

3 registers, 13 cycles

11/22/2005 © 2002-05 Hal Perkins & UW CSE O-6

Instruction Scheduling

Problem
Given a code fragment for some machine and
latencies for each operation, reorder to minimize
execution time

Constraints
Produce correct code
Minimize wasted cycles
Avoid spilling registers
Do this efficiently

CSE P 501 Au05 O-2

11/22/2005 © 2002-05 Hal Perkins & UW CSE O-7

Precedence Graph

Nodes n are operations
Attributes of each node

type – kind of operation
delay – latency

If node n2 uses the result of node n1,
there is an edge e = (n1,n2) in the
graph

11/22/2005 © 2002-05 Hal Perkins & UW CSE O-8

Example Graph
Code
a LOAD r1 <- w
b ADD r1 <- r1,r1
c LOAD r2 <- x
d MULT r1 <- r1,r2
e LOAD r2 <- y
f MULT r1 <- r1,r2
g LOAD r2 <- z
h MULT r1 <- r1,r2
i STORE w <- r1

11/22/2005 © 2002-05 Hal Perkins & UW CSE O-9

Schedules (1)

A correct schedule S maps each node n
into a non-negative integer
representing its cycle number, and

S (n) >= 0 for all nodes n (obvious)
If (n1,n2) is an edge, then
S(n1)+delay(n1) <= S(n2)
For each type t there are no more
operations of type t in any cycle than the
target machine can issue

11/22/2005 © 2002-05 Hal Perkins & UW CSE O-10

Schedules (2)

The length of a schedule S, denoted
L(S) is

L(S) = maxn (S(n)+delay(n))

The goal is to find the shortest possible
correct schedule

Other possible goals: minimize use of
registers, power, space, …

11/22/2005 © 2002-05 Hal Perkins & UW CSE O-11

Constraints
Main points

All operands must be available
Multiple operations can be ready at any given point
Moving operations can lengthen register lifetimes
Moving uses near definitions can shorten register lifetimes
Operations can have multiple predecessors

Collectively this makes scheduling NP-complete
Local scheduling is the simpler case

Straight-line code
Consistent, predictable latencies

11/22/2005 © 2002-05 Hal Perkins & UW CSE O-12

Algorithm Overview
Build a precedence graph P
Compute a priority function over the nodes in
P (typical: longest latency-weighted path)
Use list scheduling to construct a schedule,
one cycle at a time

Use queue of operations that are ready
At each cycle

Chose a ready operation and schedule it
Update ready queue

Rename registers to avoid false dependencies
and conflicts

CSE P 501 Au05 O-3

11/22/2005 © 2002-05 Hal Perkins & UW CSE O-13

List Scheduling Algorithm
Cycle = 1; Ready = leaves of P; Active = empty;
while (Ready and/or Active are not empty)

if (Ready is not empty)
remove an op from Ready;
S(op) = Cycle;
Active = Active ∪ op;

Cycle++;
for each op in Active

if (S(op) + delay(op) <= Cycle)
remove op from Active;
for each successor s of op in P

if (s is ready – i.e., all operands available)
add s to Ready

11/22/2005 © 2002-05 Hal Perkins & UW CSE O-14

Example
Code
a LOAD r1 <- w
b ADD r1 <- r1,r1
c LOAD r2 <- x
d MULT r1 <- r1,r2
e LOAD r2 <- y
f MULT r1 <- r1,r2
g LOAD r2 <- z
h MULT r1 <- r1,r2
i STORE w <- r1

11/22/2005 © 2002-05 Hal Perkins & UW CSE O-15

Variations

Backward list scheduling
Work from the root to the leaves
Schedules instructions from end to beginning of
the block

In practice, try both and pick the result that
minimizes costs

Little extra expense since the precedence graph
and other information can be reused

Global scheduling and loop scheduling
Extend basic idea in more aggressive compilers

