
CSE P 501 Au05 J-1

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-1

CSE P 501 – Compilers

x86 Architecture
Hal Perkins

Autumn 2005

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-2

Agenda

Learn/review x86 architecture
Core 32-bit part only

Ignore crufty, backward-compatible things

Suggested target language for MiniJava
(But if you want to do something different – x86-64,
mips, PPC, … – that should be fine – talk to us)

After we’ve reviewed the x86 we’ll look at
how to map language constructs to code

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-3

x86 Selected History

Hyper-Threading55 M2.2 GHz2001Xeon

Shorter pipelines vs P477 M1.6 GHz2003Pentium M

NetBurst core, SSE242 M1.5 GHz2000Pentium 4

SSE (Streaming SIMD)28 M700 MHz1999Pentium III

P6 w/MMX7 M266 MHz1997Pentium II

P6 core, bigger caches5.5 M200 MHz1995Pentium Pro

MMX on late models3.1 M60 MHz1993Pentium

On-board FPU1.2 M25 MHz1989486

32-bit regs., paging275 K20 MHz1985386

Protected mode134 K12.5 MHz1982286

16-bit regs., segments29 K8 MHz19788086

FeaturesTransistorsIntro ClockIntro YearProcessor

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-4

And It’s Backward-Compatible!
Current Pentium/Xeon processors will run
code written for the 8086(!)

(You can get VisiCalc 1.0 & others on the web!)
∴ Much of the Intel descriptions of the
architecture are loaded down with modes and
flags that obscure the modern, fairly simple
32-bit processor model

Links to the Intel manuals on the course web
These slides try to cover the core x86 32-bit
instructions and (MS) assembly language

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-5

MASM – Microsoft Assembler
MiniJava compiler project output will be an
assembler source program

Let the assembler handle the translation to binary
encodings, address resolutions, etc.

Examples here use MASM – included in Visual
Studio.NET

Can be needed to write hand-optimized code for
MMX, SSE, and other special applications

Other x86 assemblers: nasm, gas (GNU)
OK to use if you wish; you’ll need to use the
appropriate syntax, but instructions are the same

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-6

MASM Statements

Format is
optLabel: opcode operands ; comment

optLabel is an optional label
opcode and operands make up the assembly
language instruction
Anything following a ‘;’ is a comment

Language is very free-form
Comments and labels may appear on separate
lines by themselves (we’ll take advantage of this)

CSE P 501 Au05 J-2

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-7

x86 Memory Model

8-bit bytes, byte addressable
16-, 32-, 64-bit words, doublewords,
and quadwords

Usually data should be aligned on “natural”
boundaries; huge performance penalty on
modern processors if it isn’t

Little-endian – address of a 4-byte
integer is address of low-order byte

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-8

Processor Registers

8 32-bit, mostly general purpose registers
eax, ebx, ecx, edx, esi, edi, ebp (base pointer),
esp (stack pointer)

Other registers, not directly addressable
32-bit eflags register

Holds condition codes, processor state, etc.

32-bit “instruction pointer” eip
Holds address of first byte of next instruction to execute

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-9

Processor Fetch-Execute Cycle

Basic cycle
while (running) {

fetch instruction beginning at eip address
eip <- eip + instruction length
execute instruction

}

Execution continues sequentially unless a
jump is executed, which stores a new “next
instruction” address in eip

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-10

Instruction Format

Typical data manipulation instruction
opcode dst,src

Meaning is
dst <- dst op src

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-11

Instruction Operands
Normally, one operand is a register, the other
is a register, memory location, or integer
constant

In particular, can’t have both operands in memory
– not enough bits to encode this

Typical use is fairly “risc-like”
Modern processor cores optimized to execute this
efficiently
Exotic instructions mostly for backward
compatibility and normally not as efficient as
equivalent code using simple instructions

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-12

x86 Memory Stack

Register esp points to the “top” of stack
Dedicated for this use; don’t use otherwise
Points to the last 32-bit doubleword
pushed onto the stack
Should always be doubleword aligned

It will start out this way, and will stay aligned
unless your code does something bad

Stack grows down

CSE P 501 Au05 J-3

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-13

Stack Instructions

push src
esp <- esp – 4; memory[esp] <- src
(e.g., push src onto the stack)

pop dst
dst <- memory[esp]; esp <- esp + 4
(e.g., pop top of stack into dst and logically
remove it from the stack)

These are highly optimized and heavily used
The x86 doesn’t have enough registers, so the
stack is frequently used for temporary space

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-14

Stack Frames

When a method is called, a stack frame is
traditionally allocated on the top of the stack
to hold its local variables
Frame is popped on method return
By convention, ebp (base pointer) points to a
known offset into the stack frame

Local variables referenced relative to ebp
(Aside: this can be optimized to use esp-relative
addresses instead. Frees up ebp, but needs
additional bookkeeping at compile time)

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-15

Operand Address Modes (1)

These should cover most of what we’ll need
mov eax,17 ; store 17 in eax
mov eax,ecx ; copy ecx to eax
mov eax,[ebp-12] ; copy memory to eax
mov [ebp+8],eax ; copy eax to memory

References to object fields work similarly –
put the object’s memory address in a register
and use that address plus an offset

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-16

Operand Address Modes (2)
In full generality, a memory address can combine the
contents of two registers (with one being scaled) plus
a constant displacement:

[basereg + index*scale + constant]
Scale can be 2, 4, 8

Main use is for array subscripting
Example: suppose

Array of 4-byte ints
Address of the array A is in ecx
Subscript i is in eax
Code to store 1 in A[i]
mov [ecx+eax*4],1

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-17

dword ptr

Obscure, but sometimes necessary…
If the assembler can’t figure out the
size of the operands to move, you can
explicitly tell it to move 32 bits with the
qualifier “dword ptr”

mov dword ptr [eax+16],[ebp-8]
Use this if the assembler complains;
otherwise ignore

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-18

Basic Data Movement and
Arithmetic Instructions

mov dst,src
dst <- src

add dst,src
dst <- dst + src

sub dst,src
dst <- dst – src

inc dst
dst <- dst + 1

dec dst
dst <- dst - 1

neg dst
dst <- - dst
(2’s complement
arithmetic negation)

CSE P 501 Au05 J-4

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-19

Integer Multiply and Divide
imul dst,src

dst <- dst * src
32-bit product
dst must be a register

imul dst,src,imm8
dst <- dst*src*imm8
imm8 – 8 bit constant
Obscure, but useful for
optimizing array
subscripts (but address
modes can do simple
scaling)

idiv src
Divide edx:eax by src
(edx:eax holds sign-
extended 64-bit value;
cannot use other
registers for division)
eax <- quotient
edx <- remainder

cdq
edx:eax <- 64-bit sign
extended copy of eax

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-20

Bitwise Operations

and dst,src
dst <- dst & src

or dst,src
dst <- dst | src

xor dst,src
dst <- dst ^ src

not dst
dst <- ~ dst
(logical or 1’s
complement)

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-21

Shifts and Rotates

shl dst,count
dst shifted left count
bits

shr dst,count
dst <- dst shifted
right count bits (0
fill)

sar dst,count
dst <- dst shifted
right count bits (sign
bit fill)

rol dst,count
dst <- dst rotated
left count bits

ror dst,count
dst <- dst rotated
right count bits

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-22

Uses for Shifts and Rotates

Can often be used to optimize multiplication
and division by small constants

If you’re interested, look at “Hacker’s Delight” by
Henry Warren, A-W, 2003

Lots of very cool bit fiddling and other algorithms

There are additional instructions that shift
and rotate double words, use a calculated
shift amount instead of a constant, etc.

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-23

Load Effective Address

The unary & operator in C
lea dst,src ; dst <- address of src

dst must be a register
Address of src includes any address
arithmetic or indexing
Useful to capture addresses for pointers,
reference parameters, etc.

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-24

Control Flow - GOTO
At this level, all we have is goto and
conditional goto
Loops and conditional statements are
synthesized from these
A jump (goto) stores the destination address
in eip, the register that points to the next
instruction to be fetched
Optimization note: jumps play havoc with
pipeline efficiency; much work is done in
modern compilers and processors to minimize
this impact

CSE P 501 Au05 J-5

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-25

Unconditional Jumps

jmp dst
eip <- address of dst
Assembly language note: dst will be a
label. Execution continues at first machine
instruction in the code following that label
Can have multiple labels on separate lines
in front of an instruction

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-26

Conditional Jumps

Most arithmetic instructions set bits in eflags
to record information about the result (zero,
non-zero, positive, etc.)

True of add, sub, and, or; but not imul or idiv

Other instructions that set eflags
cmp dst,src ; compare dst to src
test dst,src ; calculate dst & src (logical

; and); doesn’t change either

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-27

Conditional Jumps Following
Arithmetic Operations
jz label ; jump if result == 0
jnz label ; jump if result != 0
jg label ; jump if result > 0
jng label ; jump if result <= 0
jge label ; jump if result >= 0
jnge label ; jump if result < 0
jl label ; jump if result < 0
jnl label ; jump if result >= 0
jle label ; jump if result <= 0
jnle label ; jump if result > 0

Obviously, the assembler is providing multiple opcode
mnemonics for individual instructions
If you use these, it will probably be the result of an optimization

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-28

Compare and Jump
Conditionally

Very common pattern: compare two
operands and jump if a relationship
holds between them
Would like to do this

jmpcond op1,op2,label
but can’t, because 3-address
instructions aren’t included in the
architecture

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-29

cmp and jcc

Instead, use a 2-instruction sequence
cmp op1,op2
jcc label

where jcc is a conditional jump that is
taken if the result of the comparison
matches the condition cc

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-30

Conditional Jumps Following
Arithmetic Operations
je label ; jump if op1 == op2
jne label ; jump if op1 != op2
jg label ; jump if op1 > op2
jng label ; jump if op1 <= op2
jge label ; jump if op1 >= op2
jnge label ; jump if op1 < op2
jl label ; jump if op1 < op2
jnl label ; jump if op1 >= op2
jle label ; jump if op1 <= op2
jnle label ; jump if op1 > op2

Again, the assembler is mapping more than one mnemonic to
some of the actual machine instructions

CSE P 501 Au05 J-6

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-31

Function Call and Return

The x86 instruction set itself only provides for
transfer of control (jump) and return
Stack is used to capture return address and
recover it
Everything else – parameter passing, stack
frame organization, register usage – is a
matter of convention and not defined by the
hardware

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-32

call and ret Instructions

call label
Push address of next instruction and jump
esp <- esp – 4; memory[esp] <- eip
eip <- address of label

ret
Pop address from top of stack and jump
eip <- memory[esp]; esp <- esp + 4
WARNING! The word on the top of the stack had
better be an address, not some leftover data

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-33

Win 32 C Function Call
Conventions

Wintel compilers obey the following
conventions for C programs

Note: calling conventions normally
designed very early in the instruction set/
basic software design. Hard (e.g., basically
impossible) to change later.

C++ augments these conventions to
handle the “this” pointer
We’ll use these conventions in our code

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-34

Win32 C Register Conventions
These registers must be restored to their
original values before a function returns, if
they are altered during execution

esp, ebp, ebx, esi, edi
Traditional: push/pop from stack to save/restore

A function may use the other registers (eax,
ecx, edx) however it wants, without having to
save/restore them
A 32-bit function result is expected to be in
eax when the function returns

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-35

Call Site

Caller is responsible for
Pushing arguments on the stack from right
to left (allows implementation of varargs)
Execute call instruction
Pop arguments from stack after return

For us, this means add 4*(# arguments) to esp
after the return, since everything is either a 32-
bit variable (int, bool), or a reference (pointer)

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-36

Call Example

n = sumOf(17,42)
push 42 ; push args
push 17
call sumOf ; jump &

; push addr
add esp,8 ; pop args
mov [ebp+offsetn],eax ; store result

CSE P 501 Au05 J-7

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-37

Callee

Called function must do the following
Save registers if necessary
Allocate stack frame for local variables
Execute function body
Ensure result of non-void function is in eax
Restore any required registers if necessary
Pop the stack frame
Return to caller

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-38

Win32 Function Prologue
The code that needs to be executed before
the statements in the body of the function
are executed is referred to as the prologue
For a Win32 function f, it looks like this:
f: push ebp ; save old frame pointer

mov ebp,esp ; new frame ptr is top of
; stack after arguments and
; return address are pushed

sub esp,”# bytes needed”
; allocate stack frame

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-39

Win32 Function Epilogue
The epilogue is the code that is executed to obey a
return statement (or if execution “falls off” the
bottom of a void function)
For a Win32 function, it looks like this:

mov eax,”function result”
; put result in eax if not already
; there (if non-void function)

mov esp,ebp ; restore esp to old value
; before stack frame allocated

pop ebp ; restore ebp to caller’s value
ret ; return to caller

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-40

Example Function

Source code
int sumOf(int x, int y) {

int a, int b;
a = x;
b = a + y;
return b;

}

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-41

Stack Frame for sumOf

int sumOf(int x, int y) {
int a, int b;
a = x;
b = a + y;
return b;

}

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-42

Assembly Language Version
;; int sumOf(int x, int y) {
;; int a, int b;
sumOf:

push ebp ; prologue
mov ebp,esp
sub esp, 8

;; a = x;
mov eax,[ebp+8]
mov [ebp-4],eax

;; b = a + y;
mov eax,[ebp-4]
add eax,[ebp+12]
mov [ebp-8],eax

;; return b;
mov eax,[ebp-8]
mov esp,ebp
pop ebp
ret

;; }

CSE P 501 Au05 J-8

11/1/2005 © 2002-05 Hal Perkins & UW CSE J-43

Coming Attractions

Now that we’ve got a basic idea of the
x86 instruction set, we need to map
language constructs to x86

Code Shape

Then on to basic code generation
And later, an optimization sampler

