
CSE P 501 Su04 I-1

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-1

CSE P 501 – Compilers

Static Semantics
Hal Perkins

Autumn 2005

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-2

Agenda

Static semantics
Types
Attribute grammars
Representing types
Symbol tables
Note: this covers a superset of what we need
for MiniJava

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-3

What do we need to know to
compile this?
class C {

int a;
C(int initial) {

a = initial;
}
void setA(int val) {

a = val;
}

}

class Main {
public static void main(){

C c = new C(17);
c.setA(42);

}
}

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-4

Beyond Syntax
There is a level of correctness that is not captured by
a context-free grammar

Has a variable been declared?
Are types consistent in an expression?
In the assignment x=y, is y assignable to x?
Does a method call have the right number and types of
parameters?
In a selector p.q, is q a method or field of class instance p?
Is variable x guaranteed to be initialized before it is used?
Could p be null when p.q is executed?
Etc. etc. etc.

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-5

What else do we need to
know to generate code?

Where are fields allocated in an object?
How big are objects? (i.e., how much storage
needs to be allocated by new)
Where are local variables stored when a
method is called?
Which methods are associated with an
object/class?

In particular, how do we figure out which method
to call based on the run-time type of an object?

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-6

Types

Role of types in programming
languages

Run-time safety
Compile-time error detection
Improved expressiveness (method or
operator overloading, for example)

CSE P 501 Su04 I-2

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-7

Semantic Analysis

Some key ideas
Extract types and other information from the
program
Check language rules that go beyond the context-
free grammar

Key data structures: symbol tables
For each identifier in the program, record its
attributes (kind, type, etc.)
Later: assign storage locations (stack frame
offsets) for variables; other annotations

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-8

Some Kinds of Semantic
Information

ExpressionsConstantsValues

Code generationAssigned by compilerRegister & memory
locations

Statements,
expressions

Declarations,
expressions

Constant/variable
information

OperationsDeclarations,
expressions

Type information

Expressions,
statements

DeclarationsSymbol tables

Used to processGenerated FromInformation

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-9

Semantic Checks

For each language construct we want to
know

What semantic rules should be checked according
to the language definition (type compatibility, etc.)
For an expression, what is its type (used to check
whether the expression is used in the right
context)
For declarations in particular, what information
needs to be captured to be used elsewhere

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-10

A Sampling of Semantic
Checks (0)

Name: id
id has been declared and is in scope
Inferred type of id is its declared type
Memory location assigned by compiler

Constant: v
Inferred type and value are explicit

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-11

A Sampling of Semantic
Checks (1)

Binary operator: exp1 op exp2

exp1 and exp2 have compatible types
Identical, or
Well-defined conversion to appropriate types

Inferred type is a function of the operator
and operands

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-12

A Sampling of Semantic
Checks (2)

Assignment: exp1 = exp2
exp1 is assignable (not a constant or expression)
exp1 and exp2 have compatible types

Identical, or
exp2 can be converted to exp1 (e.g., char to int), or
Type of exp2 is a subclass of type of exp1 (can be
decided at compile time)

Inferred type is type of exp1

Location where value is stored is assigned by the
compiler

CSE P 501 Su04 I-3

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-13

A Sampling of Semantic
Checks (3)

Cast: (exp1) exp2
exp1 is a type
exp2 either

Has same type as exp1

Can be converted to type exp1 (e.g., double to int)
Is a superclass of exp1 (in general requires a runtime
check to verify that exp2 has type exp1)

Inferred type is exp1

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-14

A Sampling of Semantic
Checks (4)

Field reference exp . f
exp is a reference type (class instance)
The class of exp has a field named f
Inferred type is declared type of f

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-15

A Sampling of Semantic
Checks (5)

Method call exp.m(e1, e2, …, en)
exp is a reference type (class instance)
The class of exp has a method named m
The method has n parameters
Each argument has a type that can be
assigned to the associated parameter
Inferred type is given by method
declaration (or is void)

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-16

A Sampling of Semantic
Checks (6)

Return statement return exp; return;
The expression can be assigned to a
variable with the declared type of the
method (if the method is not void)
There’s no expression (if the method is
void)

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-17

Semantic Analysis
Parser builds abstract syntax tree
Now need to extract semantic information
and check constraints

Can sometimes be done during the parse, but
often easier to organize as separate phases

And some things can’t be done on the fly during the
parse, e.g., information about identifiers that are used
before they are declared (fields, classes)

Information stored in symbol tables
Generated by semantic analysis, used there and
later

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-18

Attribute Grammars

A systematic way to think about
semantic analysis
Sometimes used directly, but even if ad
hoc techniques are used, AGs are a
useful guide to organizing the analysis

CSE P 501 Su04 I-4

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-19

Attribute Grammars
Idea: associate attributes with each node in
the (abstract) syntax tree
Examples of attributes

Type information
Storage location
Assignable (e.g., expression vs variable; lvalue vs
rvalue for C/C++ programmers)
Value (for constant expressions)
etc. …

Notation: X.a if a is an attribute of node X

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-20

Attribute Example

Assume that each node has an attribute .val
AST and attribution for (1+2) * (6 / 2)

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-21

Inherited and Synthesized
Attributes

Given a production X ::= Y1 Y2 … Yn

A synthesized attribute is X.a is a
function of some combination of
attributes of Yi’s (bottom up)
An inherited attribute Yi.b is a function
of some combination of attributes X.a
and other Yj.c (top down)

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-22

Informal Example of Attribute
Rules (1)

Attributes for simple arithmetic
language
Grammar

program ::= decl stmt
decl ::= int id;
stmt ::= exp = exp ;
exp ::= id | exp + exp | 1

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-23

Informal Example of Attribute
Rules (2)

Attributes
env (environment, e.g., symbol table);
synthesized by decl, inherited by stmt
type (expression type); synthesized
kind (variable [lvalue] vs value [rvalue]);
synthesized

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-24

Attributes for Declarations

decl ::= int id;
decl.env = {identifier, int, var}

CSE P 501 Su04 I-5

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-25

Attributes for Program

program ::= decl stmt
stmt.env = decl.env

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-26

Attributes for Constants

exp ::= 1
exp.kind = val
exp.type = int

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-27

Attributes for Expressions

exp ::= id
id.type = exp.env.lookup(id)
exp.type = id.type
error if id.type != exp.expectedtype
exp.kind = id.kind

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-28

Attributes for Addition

exp ::= exp1 + exp2

exp1.env = exp.env
exp2.env = exp.env
error if exp1.type != exp2.type

(or error if not combatable when rules are
move complex)

exp.type = exp1.type
exp.kind = val

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-29

Attribute Rules for Assignment

stmt ::= exp1 = exp2;
exp1.env = stmt.env
exp2.env = stmt.env
Error if exp2.type is not assignment
compatibile with exp1.type
error if exp1.kind == val (must be var)

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-30

Example

int x; x = x + 1;

CSE P 501 Su04 I-6

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-31

Extensions

This can be extended to handle
sequences of declarations and
statements

Sequence of declarations builds up
combined environment with information
about all declarations
Full environment is passed down to
statements and expressions

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-32

Observations

These are equational (functional)
computations
This can be automated, provided the attribute
equations are non-circular
Problems

Non-local computation
Can’t afford to literally pass around copies of
large, aggregate structures like environments

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-33

In Practice

Attribute grammars give us a good way of
thinking about how to structure semantic
checks
Symbol tables will hold environment
information
Add fields to AST nodes to refer to
appropriate attributes (symbol table entries
for identifiers, expression types, etc.)

Put in appropriate places in inheritance tree –
statements don’t need types, for example

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-34

Symbol Tables

Map identifiers to
<type, kind, location, other properties>
Operations

Lookup(id) => information
Enter(id, information)
Open/close scopes

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-35

Aside:
Implementing Symbol Tables

Topic in classical compiler course:
implementing a hashed symbol table
These days: use the collection classes that
are provided with the standard language
libraries (Java, C#, C++, etc.)
For Java:

Map (HashMap) will solve most of the problems
List (ArrayList) for ordered lists (parameters, etc.)

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-36

Symbol Tables for MiniJava (1)

Global – Per Program Information
Single global table to map class names to
per-class symbol tables

Created in a pass over class definitions in AST
Used in remaining parts of compiler to check
field/method names and extract information
about them

CSE P 501 Su04 I-7

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-37

Symbol Tables for MiniJava (2)

Global – Per Class Information
1 Symbol table for each class

1 entry for each method/field declared in the
class

Contents: type information, public/private,
parameter types (for methods), storage locations
(later), etc.

In full Java, multiple symbol tables (or more
complex symbol table) per class since methods
and fields can have the same names in a class

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-38

Symbol Tables for MiniJava (3)

Global (cont)
All global tables persist throughout the
compilation

And beyond in a real Java or C# compiler…
(e.g., symbolic information in Java .class files)

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-39

Symbol Tables for MiniJava (4)

Local symbol table for each method
1 entry for each local variable or parameter

Contents: type information, storage locations
(later), etc.

Needed only while compiling the method;
can discard when done

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-40

Beyond MiniJava

What we aren’t dealing with: nested scopes
Inner classes
Nested scopes in methods – reuse of identifiers in
parallel or (if allowed) inner scopes

Basic idea: new symbol table for inner
scopes, linked to surrounding scope’s table

Look for identifier in inner scope; if not found look
in surrounding scope (recursively)
Pop back up on scope exit

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-41

Engineering Issues

In practice, want to retain O(1) lookup
Use hash tables with additional information
to get the scope nesting right

In multipass compilers, symbol table
information needs to persist after
analysis of inner scopes for use on later
passes

See a good compiler textbook for details

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-42

Error Recovery

What to do when an undeclared identifier is
encountered?

Only complain once (Why?)
Can forge a symbol table entry for it once you’ve
complained so it will be found in the future
Assign the forged entry a type of “unknown”
“Unknown” is the type of all malformed
expressions and is compatible with all other types
to avoid redundant error messages

CSE P 501 Su04 I-8

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-43

“Predefined” Things

Many languages have some
“predefined” items
Include code in the compiler to
manually create symbol table entries for
these when the compiler starts up

Rest of compiler generally doesn’t need to
know the difference between “predeclared”
items and ones found in the program

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-44

Type Systems

Base Types
Fundamental, atomic types
Typical examples: int, double, char

Compound/Constructed Types
Built up from other types (recursively)
Constructors include arrays, records/
structs/classes, pointers, enumerations,
functions, modules, …

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-45

Type Representation

Create a shallow class hierarchy
abstract class Type { … } // or interface
class ClassType extends Type { … }
class BaseType extends Type { … }

Should not need too many of these

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-46

Base Types
For each base type (int, boolean, others in other
languages), create a single object to represent it

Symbol table entries and AST nodes for expressions refer to
these to represent type info

Useful to create a “void” type object to tag functions
that do not return a value (if you implement these)
Also useful to create an “unknown” type object for
errors

(Having “void” and “unknown” type objects reduces the
need for special case code for these in various places.)

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-47

Compound Types

Basic idea: represent with an object
that refers to component types

Limited number of these – correspond
directly to type constructors in the
language (record/struct, array, function,…)

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-48

Class Types

class Id { fields and methods }
class ClassType extends Type {

Type baseClassType; // ref to base class
Map fields; // type info for fields
Map methods; // type info for methods

}

(Note: may not want to do this literally, depending on how
you chose to represent symbol tables for classes. i.e., class
symbol tables might be useful as the representation of the
class type.)

CSE P 501 Su04 I-9

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-49

Array Types

For Java this is simple: only possibility is
of dimensions and element type

class ArrayType extends Type {
int nDims;
Type elementType;

}

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-50

Array Types for Pascal

Pascal allows arrays to be indexed by
any discrete type

array[indexType] of elementType

Element type can be any other type,
including an array

class PascalArrayType extends Type {
Type indexType;
Type elementType;

}

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-51

Methods/Functions

Type of a method is its result type plus an
ordered list of parameter types

class MethodType extends Type {
Type resultType; // type or “void”
List parameterTypes;

}

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-52

Type Equivalance

For base types this is simple
Types are the same if they are identical
Normally there are well defined rules for
coercions between arithmetic types

Compiler inserts these automatically or when
requested by programmer (casts)

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-53

Type Equivalence for
Compound Types

Two basic strategies
Structural equivalence: two types are the
same if they are the same kind of type and
their component types are equivalent,
recursively
Name equivalence: two types are the same
only if they have the same name, even if
their structures match

Different language design philosophies

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-54

Type Equivalence and
Inheritance

Suppose we have
class Base { … }
class Extended extends Base { … }

A variable declared with type Base has a
compile-time type of Base
During execution, that variable may refer to
an object of class Base or any of its
subclasses like Extended (or can be null,
which is compatible with all class types)

Sometimes called the runtime type

CSE P 501 Su04 I-10

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-55

Useful Compiler Functions

Create a handful of methods to decide
different kinds of type compatibility

Types are identical
Type t1 is assignment compatibile with t2
Parameter list is compatible with types of
expressions in the call

Normal modularity reasons: isolates these
decisions in one place and hides the actual
type representation from the rest of the
compiler

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-56

Implementing Type Checking
for MiniJava

Create multiple visitors for the AST
First passe(s): gather information

Collect global type information for classes
Could do this in one pass, or might want to do one
pass to collect class information, then a second
one to collect per-class information about fields,
methods

Next set of passes: go through method
bodies to check types, other semantic
constraints

11/1/2005 © 2002-05 Hal Perkins & UW CSE I-57

Coming Attractions

Need to start thinking about translating to
object code (actually x86 assembly language,
the default for this project)
Next: x86 overview/review
Then

Runtime representation of classes, objects, data,
and method stack frames
Assembly language code for higher-level language
statements

