
CSE P 501 Au05 H-1

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-1

CSE P 501 – Compilers

Implementing ASTs
(in Java)

Hal Perkins
Autumn 2005

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-2

Agenda

Representing ASTs as Java objects
Parser actions
Operations on ASTs

Modularity and encapsulation
Visitor pattern

This is a general sketch of the ideas – more
detailed treatment in the book and online for
the MiniJava project

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-3

Review: ASTs
An Abstract Syntax Tree
captures the essential
structure of the
program, without the
extra concrete grammar
details needed to guide
the parser

Example:

while (n > 0) {
n = n – 1;

}

AST

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-4

Representation in Java

Basic idea is simple: use small classes
as records (or structs) to represent
nodes in the AST

Simple data structures, not too smart

But also use a bit of inheritance so we
can treat related nodes polymorphically

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-5

AST Nodes - Sketch
// Base class of AST node hierarchy
public abstract class ASTNode {

// operations
…
// string representation
public abstract String toString() ;
// etc.

}
Note: In a real compiler, we would put the node classes into
a separate Java package. Use your own judgment for your
project.

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-6

Some Statement Nodes
// Base class for all statements
public abstract class StmtNode extends ASTNode { … }
// while (exp) stmt
public class WhileNode extends StmtNode {

public ExpNode exp;
public StmtNode stmt;
public WhileNode(ExpNode exp, StmtNode stmt) {

this.exp = exp; this.stmt = stmt;
}
public String toString() {

return “While(” + exp + “) ” + stmt;
}

}
(Note on toString: most of the time we’ll want to print the tree in a
separate traversal, so this is mostly useful for limited debugging)

CSE P 501 Au05 H-2

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-7

More Statement Nodes
// if (exp) stmt [else stmt]
public class IfNode extends StmtNode {

public ExpNode exp;
public StmtNode thenStmt, elseStmt;
public IfNode(ExpNode exp,StmtNode thenStmt,StmtNode elseStmt) {

this.exp=exp; this.thenStmt=thenStmt;this.elseStmt=elseStmt;
}
public IfNode(ExpNode exp, StmtNode thenStmt) {

this(exp, thenStmt, null);
}
public String toString() { … }

}

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-8

Java Style Note (1)
Normally, any significant Java type should be defined
by an interface

interface ASTNode { ... }
If there are at least some methods that will be used
by most implementations of the interface, provide a
default implementation

public class ASTNodeImpl { ... }
Similarly for subclasses and subinterfaces

interface Statement implements ASTNode { ... }

public class StatementIMPL implements Statement { ... }

public class StatementIMPL extends ASTNodeIMPL
implements Statement { ... }

or

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-9

Java Style Note (2)
Method parameters and variables should use the
interface names as types for maximum flexibility
wherever possible
Implementations of nodes can either extend some
other class or directly implement an interface as
appropriate
Specific kinds of nodes that will not be extended can
be defined directly – no interface needed

These slides use inheritance only (historical laziness
and it’s more compact)

Exercise: how would you rework the code in the previous
examples?

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-10

Expressions
// Base class for all expressions
public abstract class ExpNode extends ASTNode { … }
// exp1 op exp2
public class BinExp extends ExpNode {

public ExpNode exp1, exp2; // operands
public int op; // operator (lexical token)
public BinExp(Token op, ExpNode exp1, ExpNode exp2) {

this.op = op; this.exp1 = exp1; this.exp2 = exp2;
}
public String toString() {

…
}

}

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-11

More Expressions
// Method call: id(arguments)
public class MethodExp extends ExpNode {

public ExpNode id; // method
public List args; // list of argument expressions
public BinExp(ExpNode id, List args) {

this.id = id; this.args = args;
}
public String toString() {

…
}

}

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-12

&c

These examples are meant to give you some
ideas, not necessarily to be used literally

E.g., you might find it much better to have a
specific AST node for “argument list” that
encapsulates the generic java.util.List of
arguments

You’ll also need nodes for class and method
declarations, parameter lists, and so forth

Starter code in book and on web for MiniJava

CSE P 501 Au05 H-3

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-13

Position Information in Nodes

To produce useful error messages, it’s helpful
to record the source program location
corresponding to a node in that node

Most scanner/parser generators have a hook for
this, usually storing source position information in
tokens
Would be nice in our projects, but not required
(i.e., get the parser/AST construction working
first)

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-14

AST Generation

Idea: each time the parser recognizes a
complete production, it produces as its
result an AST node (with links any
subtrees that are the components of
the production in its instance variables)
When we finish parsing, the result of
the goal symbol is the complete AST for
the program

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-15

Example: Recursive-Descent
AST Generation
// parse while (exp) stmt
WhileNode whileStmt() {

// skip “while (”
getNextToken();
getNextToken();

// parse exp
ExpNode condition = exp();
…

// skip “)”
getNextToken;

// parse stmt
StmtNode body = stmt();

// return AST node for while
return

new WhileNode
(condition, body);

}

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-16

AST Generation in YACC/CUP

A result type can be specified for each
item in the grammar specification
Each parser rule can be annotated with
a semantic action, which is just a piece
of Java code that returns a value of the
result type

The semantic action is executed when the
rule is reduced

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-17

YACC/CUP Parser Specification

Specification
non terminal StmtNode stmt, whileStmt;
non terminal ExpNode exp;
…
stmt ::= …

| WHILE LPAREN exp:e RPAREN stmt:s
{: RESULT = new WhileNode(e,s); :}

;

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-18

SableCC/JavaCC/others

Integrated tools like these provide tools
to generate syntax trees automatically

Advantage: saves work, don’t need to
define AST classes and write semantic
actions
Disadvantage: generated trees might not
have the right level of abstraction for what
we are trying to do

CSE P 501 Au05 H-4

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-19

Operations on ASTs

Once we have the AST, we may want to
Print a readable dump of the tree (pretty printing)
Do static semantic analysis

Type checking
Verify that things are declared and initialized properly
Etc. etc. etc. etc.

Perform optimizing transformations on the tree
Generate code from the tree, or
Generate another IR from the tree for further
processing (maybe flatten to a linear IR)

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-20

Where do the Operations Go?

Pure “object-oriented” style
Really smart AST nodes
Each node knows how to perform every operation
on itself

public class WhileNode extends StmtNode {
public WhileNode(…);
public typeCheck(…);
public StrengthReductionOptimize(…);
public generateCode(…);
public prettyPrint(…);
…

}

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-21

Critique
This is nicely encapsulated – all details about
a WhileNode are hidden in that class
But it is poor modularity
What happens if we want to add a new
Optimize operation?

Have to open up every node class
Furthermore, it means that the details of any
particular operation (optimization, type
checking) are scattered across the node
classes

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-22

Modularity Issues

Smart nodes make sense if the set of
operations is relatively fixed, but we
expect to need flexibility to add new
kinds of nodes
Example: graphics system

Operations: draw, move, iconify, highlight
Objects: textbox, scrollbar, canvas, menu,
dialog box, plus new objects defined as the
system evolves

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-23

Modularity in a Compiler

Abstract syntax does not change frequently
over time

∴ Kinds of nodes are relatively fixed
As a compiler evolves, it is common to modify
or add operations on the AST nodes

Want to modularize each operation (type check,
optimize, code gen) so its components are
together
Want to avoid having to change node classes to
modify or add an operation on the tree

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-24

Two Views of Modularity

…

XXXXXBinop

XXXXXif

XXXXXwhile

XXXXXexp

XXXXXIDENT

Print

Flatten

G
enerate x86

O
ptim

ize

Type check

…

XXXXXdialog

XXXXXscroll

XXXXXcanvas

XXXXXtext

XXXXXcircle

transm
ogrify

highlight

iconify

m
ove

draw

CSE P 501 Au05 H-5

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-25

Visitor Pattern

Idea: Package each operation in a separate
class

One method for each AST node kind
Create one instance of this visitor class

Sometimes called a “function object”
Include a generic “accept visitor” method in
every node class
To perform the operation, pass the visitor
object around the AST during a traversal

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-26

Avoiding instanceof
Next issue: we’d like to avoid huge if-elseif
nests to check the node type in the visitor

void checkTypes(ASTNode p) {
if (p instanceof WhileNode) { … }
else if (p instanceof IfNode) { … }
else if (p instanceof BinExp) { … } …

Solution: Include an overloaded “visit”
method for each node type and get the node
to call back to the correct operation for that
node(!)

“Double dispatch”

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-27

One More Issue

We want to be able to add new
operations easily, so the nodes
shouldn’t know anything specific about
the actual visitor class
Solution: an abstract Visitor interface

AST nodes include “accept visitor” method
for the interface
Specific operations (type check, code gen)
are implementations of this interface

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-28

Visitor Interface
interface Visitor {

// overload visit for each node type
public void visit(WhileNode s);
public void visit(IfNode s);
public void visit(BinExp e);
…

}

Aside: The result type can be whatever is
convenient, not necessarily void

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-29

Specific class TypeCheckVisitor
// Perform type checks on the AST
public class TypeCheckVisitor implements Visitor {

// override operations for each node type
public void visit(WhileNode s) { … }
public void visit(IfNode s) { … }
public void visit(BinExp e) {

e.exp1.accept(this); e.exp2.accept(this);
}
…

}

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-30

Add New Visitor Method to
AST Nodes

Add a new method to class ASTNode
(base class or interface describing all
AST nodes)

public abstract class ASTNode {
…
// accept a visit from a Visitor object v
public abstract void accept(Visitor v);
…

}

CSE P 501 Au05 H-6

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-31

Override Accept Method in
Each Specific AST Node Class

Example
public class WhileNode extends StmtNode {

…
// accept a visit from a Visitor object v
public void accept(Visitor v) {

v.visit(this);
}
…

}
Key points

Visitor object passed as a parameter to WhileNode
WhileNode calls visit, which dispatches to visit(WhileNode)
automatically – i.e., the correct method for this kind of node

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-32

Encapsulation

A visitor object often needs to be able
to access state in the AST nodes

∴ May need to expose more state than we
might do to otherwise
Overall a good tradeoff – better modularity

(plus, the nodes are relatively simple data
objects anyway)

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-33

Composite Objects
If the node contains references to subnodes, we
often visit them first (i.e., pass the visitor along in a
depth-first traversal of the AST)

public class WhileNode extends StmtNode {
…

// accept a visit from Visitor object v
public void accept(Visitor v) {

this.exp.accept(v);
this.stmt.accept(v);
v.visit(this);

}
…

}
Other traversals might be needed for some operations

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-34

Visitor Actions
A visitor function has a reference to the node
it is visiting (the parameter)
It’s also possible for the visitor class to
contain local instance data, used to
accumulate information during the traversal

Effectively “global data” shared by visit methods
public class TypeCheckVisitor extends NodeVisitor {

public void visit(WhileNode s) { … }
public void visit(IfNode s) { … }
…
private <local state>;

}

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-35

Responsibility for the Traversal

Possible choices
The node objects (as done above)
The visitor object (the visitor has access to
the node, so it can traverse any
substructure it wishes)
Some sort of iterator object

In a compiler, the first choice will
handle many common cases

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-36

References

For Visitor pattern (and many others)
Design Patterns: Elements of Reusable
Object-Oriented Software
Gamma, Helm, Johnson, and Vlissides
Addison-Wesley, 1995

Specific information for MiniJava AST
and visitors in the textbook

CSE P 501 Au05 H-7

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-37

Coming Attractions

Static Analysis
Type checking & representation of types
Non-context-free rules (variables and types
must be declared, etc.)

Symbol Tables
& more

