q CSE P 501 — Compilers

Implementing ASTs

(in Java)
Hal Perkins
Autumn 2005

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-1

3 Agenda

= Representing ASTs as Java objects
= Parser actions

= Operations on ASTs
= Modularity and encapsulation

= Visitor pattern

= This is a general sketch of the ideas — more
detailed treatment in the book and online for
the MiniJava project

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-2

Review: ASTs

= An Abstract Syntax Tree = AST
captures the essential
structure of the
program, without the
extra concrete grammar
details needed to guide
the parser

= Example:
while (n>0){
n=n-1,

}

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-3

3 Representation in Java

= Basic idea is simple: use small classes
as records (or structs) to represent
nodes in the AST
= Simple data structures, not too smart

= But also use a bit of inheritance so we
can treat related nodes polymorphically

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-4

AST Nodes - Sketch

// Base class of AST node hierarchy
public abstract class ASTNode {
// operations

// string representation
public abstract String toString() ;
/1 etc.

}

= Note: In a real compiler, we would put the node classes into
a separate Java package. Use your own judgment for your
project.

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-5

CSE P 501 Au05

Some Statement Nodes

// Base class for all statements
public abstract class StmtNode extends ASTNode { ... }
// while (exp) stmt
public class WhileNode extends StmtNode {
public ExpNode exp;
public StmtNode stmt;
public WhileNode(ExpNode exp, StmtNode stmt) {
this.exp = exp; this.stmt = stmt;

}
public String toString() {
return “While(” + exp + “) 7 + stmt;

}

(Note on toString: most of the time we'll want to print the tree in a
separate traversal, so this is mostly useful for limited debugging)

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-6

H-1

More Statement Nodes

11'if (exp) stmt [else stmt]
public class IfNode extends StmtNode {
public ExpNode exp;
public StmtNode thenStmt, elseStmt;
public IfNode(ExpNode exp,StmtNode thenStmt,StmtNode elseStmt) {
this.exp=exp; this.thenStmt=thenStmt;this.elseStmt=elseStmt;

public IfNode(ExpNode exp, StmtNode thenStmt) {
this(exp, thenStmt, null);

public String toString() { ... }

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-T

Java Style Note (1)

= Normally, any significant Java type should be defined
by an interface
interface ASTNode { ... }
= If there are at least some methods that will be used
by most implementations of the interface, provide a
default implementation
public class ASTNodelmpl { ... }
= Similarly for subclasses and subinterfaces
interface Statement implements ASTNode { ... }

public class StatementIMPL implements Statement { ... }

or
public class StatementIMPL extends ASTNodelMPL
implements Statement { ... }

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-8

Java Style Note (2)

= Method parameters and variables should use the
interface names as types for maximum flexibility
wherever possible

= Implementations of nodes can either extend some
other class or directly implement an interface as
appropriate

= Specific kinds of nodes that will not be extended can
be defined directly — no interface needed

= These slides use inheritance only (historical laziness
and it's more compact)

= Exercise: how would you rework the code in the previous
examples?

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-9

Expressions

// Base class for all expressions

public abstract class ExpNode extends ASTNode { ... }

// expl op exp2

public class BinExp extends ExpNode {
public ExpNode exp1, exp2; /1 operands
public int op; // operator (lexical token)
public BinExp(Token op, ExpNode expl, ExpNode exp2) {

this.op = op; this.expl = expl; this.exp2 = exp2;

}
public String toString() {

}

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-10

More Expressions

// Method call: id(arguments)
public class MethodExp extends ExpNode {
public ExpNode id; /1 method
public List args; // list of argument expressions
public BinExp(ExpNode id, List args) {
this.id = id; this.args = args;

}
public String toString() {

}

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-11

CSE P 501 Au05

&cC

= These examples are meant to give you some
ideas, not necessarily to be used literally
= E.g., you might find it much better to have a
specific AST node for “argument list” that
encapsulates the generic java.util.List of
arguments
= You'll also need nodes for class and method
declarations, parameter lists, and so forth
= Starter code in book and on web for MiniJava

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-12

H-2

3 Position Information in Nodes

= To produce useful error messages, it's helpful

to record the source program location

corresponding to a node in that node

= Most scanner/parser generators have a hook for
this, usually storing source position information in
tokens

= Would be nice in our projects, but not required
(i.e., get the parser/AST construction working
first)

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-13

3 AST Generation

= Idea: each time the parser recognizes a
complete production, it produces as its
result an AST node (with links any
subtrees that are the components of
the production in its instance variables)

= When we finish parsing, the result of
the goal symbol is the complete AST for
the program

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-14

Example: Recursive-Descent
AST Generation

// parse while (exp) stmt /1 skip “)”

WhileNode whileStmt() { getNextToken;
// skip “while ("
getNextToken(); // parse stmt
getNextToken(); StmtNode body = stmt();
/1 parse exp // return AST node for while
ExpNode condition = exp(); return

new WhileNode
(condition, body);
}

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-15

3 AST Generation in YACC/CUP

= A result type can be specified for each
item in the grammar specification

= Each parser rule can be annotated with
a semantic action, which is just a piece
of Java code that returns a value of the
result type

= The semantic action is executed when the
rule is reduced

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-16

3 YACC/CUP Parser Specification

= Specification

non terminal StmtNode stmt, whileStmt;
non terminal ExpNode exp;

stmt ::= ..

| WHILE LPAREN exp:e RPAREN stmt:s
{: RESULT = new WhileNode(e,s); :}
10/25/2005 © 2002-05 Hal Perkins & UW CSE H-17

3 SableCC/JavaCC/others

= Integrated tools like these provide tools
to generate syntax trees automatically
= Advantage: saves work, don’t need to
define AST classes and write semantic
actions

= Disadvantage: generated trees might not
have the right level of abstraction for what
we are trying to do

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-18

CSE P 501 Au05

H-3

3 Operations on ASTs

= Once we have the AST, we may want to
= Print a readable dump of the tree (pretty printing)
= Do static semantic analysis
= Type checking
= Verify that things are declared and initialized properly
= Etc. etc. etc. etc.
= Perform optimizing transformations on the tree
= Generate code from the tree, or
= Generate another IR from the tree for further
processing (maybe flatten to a linear IR)

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-19

5 Where do the Operations Go?

= Pure “object-oriented” style
= Really smart AST nodes
= Each node knows how to perform every operation
on itself
public class WhileNode extends StmtNode {
public WhileNode(_..);
public typeCheck(...);
public StrengthReductionOptimize(...);
public generateCode(...);
public prettyPrint(...);

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-20

Critique

= This is nicely encapsulated — all details about
a WhileNode are hidden in that class

= But it is poor modularity

= What happens if we want to add a new
Optimize operation?
= Have to open up every node class

= Furthermore, it means that the details of any
particular operation (optimization, type
checking) are scattered across the node
classes

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-21

g Modularity Issues

= Smart nodes make sense if the set of
operations is relatively fixed, but we
expect to need flexibility to add new
kinds of nodes

= Example: graphics system
= Operations: draw, move, iconify, highlight
= Objects: textbox, scrollbar, canvas, menu,

dialog box, plus new objects defined as the
system evolves

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-22

g Modularity in a Compiler

= Abstract syntax does not change frequently
over time
= .. Kinds of nodes are relatively fixed

= As a compiler evolves, it is common to modify
or add operations on the AST nodes
= Want to modularize each operation (type check,
optimize, code gen) so its components are
together
= Want to avoid having to change node classes to
modify or add an operation on the tree

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-23

5 Two Views of Modularity

Jjololzl=® ERERERERE
HEIEIHE glgls|els
s|2|812 21§23
g|o |5 =18
2 % 5
=3
IDENT | X | X [X |X [X circle | X |[X [X |X |X
exp X [X [X [X |X text X [X [X | X |[X
while | X | X |X | X |[X canvas [X [X [X [X [X
if X | X [X [X |X scroll | X | X X |X |X
Binop X X [X |X |X dialog [X |X [X [X |X
10/25/2005 © 2002-05 Hal Perkins & UW CSE H-24

CSE P 501 Au05

3 Visitor Pattern

= Idea: Package each operation in a separate
class
= One method for each AST node kind

= Create one instance of this visitor class
= Sometimes called a “function object”

= Include a generic “accept visitor” method in
every node class

= To perform the operation, pass the visitor
object around the AST during a traversal

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-25

Avoiding instanceof

= Next issue: we'd like to avoid huge if-elseif
nests to check the node type in the visitor
void checkTypes(ASTNode p) {
if (p instanceof WhileNode) { ... }
else if (p instanceof IfNode) { ... }
else if (p instanceof BinExp) { ... } ...
= Solution: Include an overloaded “visit”
method for each node type and get the node
to call back to the correct operation for that
node(!)
= “Double dispatch”

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-26

!- One More Issue

= We want to be able to add new
operations easily, so the nodes
shouldn’t know anything specific about
the actual visitor class

= Solution: an abstract Visitor interface

= AST nodes include “accept visitor” method
for the interface

= Specific operations (type check, code gen)
are implementations of this interface

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-27

Visitor Interface

interface Visitor {
// overload visit for each node type
public void visit(WhileNode s);
public void visit(IfNode s);
public void visit(BinExp e);

}

= Aside: The result type can be whatever is
convenient, not necessarily void

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-28

3 Specific class TypeCheckVisitor

// Perform type checks on the AST

public class TypeCheckVisitor implements Visitor {
// override operations for each node type
public void visit(WhileNode s) { ... }
public void visit(IfNode s) { ... }
public void visit(BinExp e) {

e.expl.accept(this); e.exp2.accept(this);

}

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-29

CSE P 501 Au05

Add New Visitor Method to

3 AST Nodes

= Add a new method to class ASTNode
(base class or interface describing all
AST nodes)

public abstract class ASTNode {

/1 accept a visit from a Visitor object v
public abstract void accept(Visitor v);

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-30

H-5

Override Accept Method in

3 Each Specific AST Node Class

= Example
public class WhileNode extends StmtNode {

/1 accept a visit from a Visitor object v

public void accept(Visitor v) {
v.visit(this);

}

}
= Key points
= Visitor object passed as a parameter to WhileNode
= WhileNode calls visit, which dispatches to visit(WhileNode)
automatically — i.e., the correct method for this kind of node

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-31

3 Encapsulation

= A visitor object often needs to be able
to access state in the AST nodes
= .. May need to expose more state than we
might do to otherwise
= Overall a good tradeoff — better modularity

= (plus, the nodes are relatively simple data
objects anyway)

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-32

Composite Objects

= If the node contains references to subnodes, we
often visit them first (i.e., pass the visitor along in a
depth-first traversal of the AST)
public class WhileNode extends StmtNode {

/1 accept a visit from Visitor object v
public void accept(Visitor v) {
this.exp.accept(v);
this.stmt.accept(v);
v.visit(this);

= Other traversals might be needed for some operations

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-33

Visitor Actions

= A visitor function has a reference to the node
it is visiting (the parameter)

= It's also possible for the visitor class to
contain local instance data, used to
accumulate information during the traversal
= Effectively “global data” shared by visit methods
public class TypeCheckVisitor extends NodeVisitor {

public void visit(WhileNode s) { ... }
public void visit(IfNode s) { ... }

private <local state>;

}

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-34

3 Responsibility for the Traversal

= Possible choices
= The node objects (as done above)

= The visitor object (the visitor has access to
the node, so it can traverse any
substructure it wishes)

= Some sort of iterator object

= In a compiler, the first choice will
handle many common cases

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-35

3 References

= For Visitor pattern (and many others)

Design Patterns. Elements of Reusable
Objfect-Oriented Software
Gamma, Helm, Johnson, and Vlissides
Addison-Wesley, 1995
= Specific information for MiniJava AST
and visitors in the textbook

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-36

CSE P 501 Au05

H-6

3 Coming Attractions

= Static Analysis
= Type checking & representation of types

= Non-context-free rules (variables and types
must be declared, etc.)

= Symbol Tables
= & more

10/25/2005 © 2002-05 Hal Perkins & UW CSE H-37

CSE P 501 Au05

H-7

