
CSEP 501 Au05 B-1

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-1

CSEP 501 – Compilers

Languages, Automata, Regular
Expressions & Scanners

Hal Perkins
Autumn 2005

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-2

Agenda

Basic concepts of formal grammars
(review)
Regular expressions
Lexical specification of programming
languages
Using finite automata to recognize
regular expressions
Scanners and Tokens

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-3

Programming Language Specs

Since the 1960s, the syntax of every
significant programming language has
been specified by a formal grammar

First done in 1959 with BNF (Backus-Naur
Form or Backus-Normal Form) used to
specify the syntax of ALGOL 60
Borrowed from the linguistics community
(Chomsky)

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-4

Grammar for a Tiny Language

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if (expr) stmt
expr ::= id | int | expr + expr
Id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-5

Productions
The rules of a grammar are called productions
Rules contain

Nonterminal symbols: grammar variables (program,
statement, id, etc.)
Terminal symbols: concrete syntax that appears in programs
(a, b, c, 0, 1, if, (, …)

Meaning of
nonterminal ::= <sequence of terminals and nonterminals>
In a derivation, an instance of nonterminal can be replaced
by the sequence of terminals and nonterminals on the right
of the production

Often, there are two or more productions for a single
nonterminal – can use either at different times

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-6

Alternative Notations

There are several syntax notations for
productions in common use; all mean
the same thing
ifStmt ::= if (expr) stmt
ifStmt if (expr) stmt
<ifStmt> ::= if (<expr>) <stmt>

CSEP 501 Au05 B-2

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-7

Example
Derivation

a = 1 ; if (a + 1) b = 2 ;

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if (expr) stmt
expr ::= id | int | expr + expr
Id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-8

Parsing

Parsing: reconstruct the derivation
(syntactic structure) of a program
In principle, a single recognizer could
work directly from the concrete,
character-by-character grammar
In practice this is never done

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-9

Parsing & Scanning

In real compilers the recognizer is split into
two phases

Scanner: translate input characters to tokens
Also, report lexical errors like illegal characters and illegal
symbols

Parser: read token stream and reconstruct the
derivation

Scanner Parsersource tokens

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-10

Characters vs Tokens (review)

Input text
// this statement does very little
if (x >= y) y = 42;

Token Stream
IF LPAREN ID(x) GEQ ID(y)

RPAREN ID(y) BECOMES INT(42) SCOLON

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-11

Why Separate the Scanner
and Parser?

Simplicity & Separation of Concerns
Scanner hides details from parser
(comments, whitespace, input files, etc.)
Parser is easier to build; has simpler input
stream (tokens)

Efficiency
Scanner can use simpler, faster design

(But still often consumes a surprising amount
of the compiler’s total execution time)

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-12

Tokens

Idea: we want a distinct token kind
(lexical class) for each distinct terminal
symbol in the programming language

Examine the grammar to find these
Some tokens may have attributes

Examples: integer constant token will have
the actual integer (17, 42, …) as an
attribute; identifiers will have a string with
the actual id

CSEP 501 Au05 B-3

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-13

Typical Tokens in
Programming Languages

Operators & Punctuation
+ - * / () { } [] ; : :: < <= == = != ! …
Each of these is a distinct lexical class

Keywords
if while for goto return switch void …
Each of these is also a distinct lexical class (not a string)

Identifiers
A signle ID lexical class, but parameterized by actual id

Integer constants
A single INT lexical class, but parameterized by int value

Other constants, etc.

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-14

Principle of Longest Match

In most languages, the scanner should pick
the longest possible string to make up the
next token if there is a choice
Example

return foobar != hohum;
should be recognized as 5 tokens

not more (i.e., not parts of words or identifiers, or
! and = as separate tokens)

RETURN ID(foobar) NEQ ID(hohum) SCOLON

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-15

Formal Languages & Automata
Theory (a review in one slide)

Alphabet: a finite set of symbols
String: a finite, possibly empty sequence of symbols
from an alphabet
Language: a set, often infinite, of strings
Finite specifications of (possibly infinite) languages

Automaton – a recognizer; a machine that accepts all strings
in a language (and rejects all other strings)
Grammar – a generator; a system for producing all strings in
the language (and no other strings)

A particular language may be specified by many
different grammars and automata
A grammar or automaton specifies only one language

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-16

Regular Expressions and FAs

The lexical grammar (structure) of most
programming languages can be
specified with regular expressions

(Sometimes a little cheating is needed)

Tokens can be recognized by a
deterministic finite automaton

Can be either table-driven or built by hand
based on lexical grammar

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-17

Regular Expressions

Defined over some alphabet Σ
For programming languages, commonly
ASCII or Unicode

If re is a regular expression, L(re) is
the language (set of strings) generated
by re

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-18

Fundamental REs

∅ Empty language{ }

Empty string{ ε }ε

Singleton set, for each a in Σ{ a }a

NotesL(re)re

CSEP 501 Au05 B-4

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-19

Operations on REs

Precedence: * (highest), concatenation, | (lowest)
Parentheses can be used to group REs as needed

0 or more occurrences
(Kleene closure)

L(r)*r*

Combination (union)L(r) L(s)r|s

ConcatenationL(r)L(s)rs

NotesL(re)re

∪

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-20

Abbreviations
The basic operations generate all possible regular
expressions, but there are common abbreviations
used for convenience. Typical examples:

1 of the given characters(a|b|x|y|z)[abxyz]

1 character in given range(a|b|…|z)[a-z]

0 or 1 occurrence(r | ε)r?

1 or more occurrences(rr*)r+

NotesMeaningAbbr.

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-21

Examples

7 character sequencehogwash
2 character sequence<=

2 character sequence!=
single = character=
single ! character!
single + character+
Meaningre

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-22

More Examples

[abc]+

[a-zA-Z][a-zA-Z0-9_]*

[1-9][0-9]*

[0-9]+

[abc]*

Meaningre

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-23

Abbreviations

Many systems allow abbreviations to
make writing and reading definitions
easier

name ::= re

Restriction: abbreviations may not be
circular (recursive) either directly or
indirectly

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-24

Example

Possible syntax for numeric constants

digit ::= [0-9]
digits ::= digit+
number ::= digits (. digits)?

([eE] (+ | -)? digits) ?

CSEP 501 Au05 B-5

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-25

Recognizing REs

Finite automata can be used to
recognize strings generated by regular
expressions
Can build by hand or automatically

Not totally straightforward, but can be
done systematically
Tools like Lex, Flex, and JLex do this
automatically, given a set of REs

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-26

Finite State Automaton
A finite set of states

One marked as initial state
One or more marked as final states
States sometimes labeled or numbered

A set of transitions from state to state
Each labeled with symbol from Σ, or ε

Operate by reading input symbols (usually characters)
Transition can be taken if labeled with current symbol
ε-transition can be taken at any time

Accept when final state reached & no more input
Scanner slightly different – accept longest match each time called,
even if more input; i.e., run the FSA each time the scanner is called

Reject if no transition possible or no more input and not in final
state (DFA)

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-27

Example: FSA for “cat”

a tc

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-28

DFA vs NFA

Deterministic Finite Automata (DFA)
No choice of which transition to take under any
condition

Non-deterministic Finite Automata (NFA)
Choice of transition in at least one case
Accept if some way to reach final state on given
input
Reject if no possible way to final state

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-29

FAs in Scanners

Want DFA for speed (no backtracking)
Conversion from regular expressions to
NFA is easy
There is a well-defined procedure for
converting a NFA to an equivalent DFA

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-30

From RE to NFA: base cases

a

ε

CSEP 501 Au05 B-6

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-31

rs

r sε

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-32

r | s

r

sε ε

ε ε

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-33

r *

r

ε

ε ε

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-34

From NFA to DFA
Subset construction

Construct a DFA from the NFA, where each DFA state
represents a set of NFA states

Key idea
The state of the DFA after reading some input is the set of
all states the NFA could have reached after reading the
same input

Algorithm: example of a fixed-point computation
If NFA has n states, DFA has at most 2n states

=> DFA is finite, can construct in finite # steps
Resulting DFA may have more states than needed

See books for construction and minimization details

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-35

Example: DFA for hand-
written scanner

Idea: show a hand-written DFA for some
typical programming language constructs

Then use to construct hand-written scanner

Setting: Scanner is called whenever the
parser needs a new token

Scanner stores current position in input
Starting there, use a DFA to recognize the longest
possible input sequence that makes up a token
and return that token

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-36

Scanner DFA Example (1)

0

Accept LPAREN
(

2

Accept RPAREN
)

3

whitespace
or comments

Accept SCOLON
;

4

Accept EOF
end of input

1

CSEP 501 Au05 B-7

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-37

Scanner DFA Example (2)

Accept NEQ
! 6

Accept NOT7

5 =

other

Accept LEQ
< 9

Accept LESS10

8 =

other

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-38

Scanner DFA Example (3)

[0-9]

Accept INT12

11

other

[0-9]

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-39

Strategies for handling identifiers vs keywords
Hand-written scanner: look up identifier-like things in table of
keywords to classify (good application of perfect hashing)
Machine-generated scanner: generate DFA will appropriate
transitions to recognize keywords

Lots ’o states, but efficient (no extra lookup step)

Scanner DFA Example (4)

[a-zA-Z]

Accept ID or keyword14

13

other

[a-zA-Z0-9_]

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-40

Implementing a Scanner by
Hand – Token Representation

A token is a simple, tagged structure
public class Token {

public int kind; // token’s lexical class
public int intVal; // integer value if class = INT
public String id; // actual identifier if class = ID
// lexical classes
public static final int EOF = 0; // “end of file” token
public static final int ID = 1; // identifier, not keyword
public static final int INT = 2; // integer
public static final int LPAREN = 4;
public static final int SCOLN = 5;
public static final int WHILE = 6;
// etc. etc. etc. …

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-41

Simple Scanner Example
// global state and methods

static char nextch; // next unprocessed input character

// advance to next input char
void getch() { … }

// skip whitespace and comments
void skipWhitespace() { … }

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-42

Scanner getToken() method
// return next input token
public Token getToken() {

Token result;

skipWhiteSpace();

if (no more input) {
result = new Token(Token.EOF); return result;

}

switch(nextch) {
case '(': result = new Token(Token.LPAREN); getch(); return result;
case ‘)': result = new Token(Token.RPAREN); getch(); return result;
case ‘;': result = new Token(Token.SCOLON); getch(); return result;

// etc. …

CSEP 501 Au05 B-8

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-43

getToken() (2)
case '!': // ! or !=

getch();
if (nextch == '=') {

result = new Token(Token.NEQ); getch(); return result;
} else {

result = new Token(Token.NOT); return result;
}

case '<': // < or <=
getch();
if (nextch == '=') {

result = new Token(Token.LEQ); getch(); return result;
} else {

result = new Token(Token.LESS); return result;
}

// etc. …

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-44

getToken() (3)
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':

// integer constant
String num = nextch;
getch();
while (nextch is a digit) {

num = num + nextch; getch();
}
result = new Token(Token.INT, Integer(num).intValue());
return result;

…

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-45

getToken (4)
case 'a': … case 'z':
case 'A': … case 'Z': // id or keyword

string s = nextch; getch();
while (nextch is a letter, digit, or underscore) {

s = s + nextch; getch();
}
if (s is a keyword) {

result = new Token(keywordTable.getKind(s));
} else {

result = new Token(Token.ID, s);
}
return result;

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-46

Project Notes

For the course project, use a lexical
analyzer generator
Suggestion: JLex (or JFlex) a Lex/Yacc-
like pair of compiler tools

10/18/2005 © 2002-5 Hal Perkins & UW CSE B-47

Coming Attractions

Homework this week: paper exercises on
regular expressions, etc.
Next week: first part of the compiler
assignment – the scanner

Basically the project from Ch. 2 of Appel’s book if
you want to get a bit ahead

Next topic: parsing
Will do LR parsing first – suggest using this for the
project (thus CUP (YACC-like) instead of JavaCC)
Good time to start reading ch. 3.

