
CSE P 501 Su04 G-1

7/6/2004 © 2002-04 Hal Perkins & UW CSE G-1

CSE P 501 – Compilers

Intermediate Representations
Hal Perkins

Summer 2004

7/6/2004 © 2002-04 Hal Perkins & UW CSE G-2

Agenda

Parser Semantic Actions
Intermediate Representations

Abstract Syntax Trees (ASTs)
Linear Representations
& more

7/6/2004 © 2002-04 Hal Perkins & UW CSE G-3

Compiler Structure (review)

Source Target

Scanner

Parser Middle
(optimization)

Code Gen

characters

tokens

IR

IR (maybe different)

Assembly or binary code

7/6/2004 © 2002-04 Hal Perkins & UW CSE G-4

What’s a Parser to Do?

Idea: at significant points in the parse
perform a semantic action

Typically when a production is reduced (LR) or at
a convenient point in the parse (LL)

Typical semantic actions
Build (and return) a representation of the parsed
chunk of the input (compiler)
Perform some sort of computation and return
result (interpreter)

7/6/2004 © 2002-04 Hal Perkins & UW CSE G-5

Intermediate Representations

In most compilers, the parser builds an
intermediate representation of the
program
Rest of the compiler transforms the IR
for efficiency and eventually translates
it to final code

Often will transform initial IR to one or
more different IRs along the way

7/6/2004 © 2002-04 Hal Perkins & UW CSE G-6

IR Design
Decisions affect speed and efficiency of the rest of
the compiler
Desirable properties

Easy to generate
Easy to manipulate
Expressive
Appropriate level of abstraction

Different tradeoffs depending on compiler goals
Different tradeoffs in different parts of the same
compiler

CSE P 501 Su04 G-2

7/6/2004 © 2002-04 Hal Perkins & UW CSE G-7

Types of IRs

Three major categories
Structural
Linear
Hybrid

Some basic examples now; more when
we get to later phases of the compiler

7/6/2004 © 2002-04 Hal Perkins & UW CSE G-8

Levels of Abstraction

Key design decision: how much detail to
expose

Affects possibility and profitability of
various optimizations
Structural IRs are typically fairly high-level
Linear IRs are typically low-level
But these generalizations aren’t always
true

7/6/2004 © 2002-04 Hal Perkins & UW CSE G-9

Example: Array Reference

A[i,j] loadI 1 => r1
sub rj,r1 => r2
loadI 10 => r3
mult r2,r3 => r4
sub ri,r1 => r5
add r4,r5 => r6
loadI @A => r7
add r7,r6 => r8
load r8 => r9

subscript

A i j

7/6/2004 © 2002-04 Hal Perkins & UW CSE G-10

Structural IRs

Typically reflect source (or other higher-
level) language structure
Tend to be large
Examples: syntax trees, DAGs
Particularly useful for source-to-source
transformations

7/6/2004 © 2002-04 Hal Perkins & UW CSE G-11

Concrete Syntax Trees

The full grammar is needed to guide the
parser, but contains many extraneous details

Chain productions
Rules that control precedence and associativity

Typically the full syntax tree does not need to
be used explicitly

7/6/2004 © 2002-04 Hal Perkins & UW CSE G-12

Syntax Tree Example

Concrete syntax for x=2*(n+m);

CSE P 501 Su04 G-3

7/6/2004 © 2002-04 Hal Perkins & UW CSE G-13

Abstract Syntax Trees

Want only essential structural information
Omit extraneous junk

Can be represented explicitly as a tree or in a
linear form

Example: LISP/Scheme S-expressions are
essentially ASTs

7/6/2004 © 2002-04 Hal Perkins & UW CSE G-14

AST Example

AST for x=2*(n+m);

7/6/2004 © 2002-04 Hal Perkins & UW CSE G-15

Linear IRs

Pseudo-code for an abstract machine
Level of abstraction varies
Simple, compact data structures
Examples: stack machine code, three-
address code

7/6/2004 © 2002-04 Hal Perkins & UW CSE G-16

Stack Machine Code

Originally used for stack-based computers
(famous example: B5000)
Now used for Java (.class files), C# (MSIL)
Advantages

Compact; mostly 0-address opcodes
Easy to generate
Simple to translate to naïve machine code

But need to do better in production compilers

7/6/2004 © 2002-04 Hal Perkins & UW CSE G-17

Stack Code Example

Hypothetical code for x=2*(n+m);
pushaddr x
pushconst 2
pushval n
pushval m
add
mult
store

7/6/2004 © 2002-04 Hal Perkins & UW CSE G-18

Three-Address code

Many different representations
General form: x <- y (op) z

One operator
Maximum of three names

Example: x=2*(n+m); becomes
t1 <- n + m
t2 <- 2 * t1
x <- t2

CSE P 501 Su04 G-4

7/6/2004 © 2002-04 Hal Perkins & UW CSE G-19

Three Address Code (cont)

Advantages
Resembles code for actual machines
Explicitly names intermediate results
Compact
Often easy to rearrange

Various representations
Quadruples, triples, SSA
Much more later…

7/6/2004 © 2002-04 Hal Perkins & UW CSE G-20

Hybrid IRs

Combination of structural and linear
Level of abstraction varies
Example: control-flow graph

7/6/2004 © 2002-04 Hal Perkins & UW CSE G-21

What to Use?

Common choice: all(!)
AST or other structural representation built by
parser and used in early stages of the compiler

Closer to source code
Good for semantic analysis
Facilitates some higher-level optimizations

Flatten to linear IR for later stages of compiler
Closer to machine code
Exposes machine-related optimizations

Hybrid forms in optimization phases

7/6/2004 © 2002-04 Hal Perkins & UW CSE G-22

Coming Attractions

Representing ASTs
Working with ASTs

Where do the algorithms go?
Is it really object-oriented?
Visitor pattern

Then: semantic analysis, type checking,
and symbol tables

